Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Velocity field of an incompressible flow is given by V = 6xi − 6yj (m/s) a) Find the pathlines in x-y plane. Make a sketch of pathlines for x ≥ 0 and y ≥ 0. b) Find the streamlines. Make a sketch of streamlines for x ≥ 0 and y ≥ 0. c) At time t = 0 s, the position of a rectangular fluid element ABCD is described by the corner points A(1,3), B(2,3), C(1,2) and D(2,2). Determine the new position of the fluid element at time t = 1/6 s
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 6 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- In an experiment to determine the force acting on an oval-shaped body, a model is mounted in the test section of a wind tunnel. The test section itself has rectangular cross section with height 2h and width l (into the page). The model spans the entire width of the test section. The model is subject to a steady, uniform, incompressible flow of velocity V₁. The pressure gauge indicates a pressure difference (Ap) between the test section exit (location 2) and the test section entrance (location 1). The velocity profile downstream of the model is shown in the figure. Use the control volume shown. Find the force acting on the model in terms of given quantities V₁, h, l, Ap, and density, p. Ap V ALarrow_forwardConsider a 2-dimensional incompressible flow field. The vertical component of velocity forthe flow field is given by 2y. The pressure at (x, y) = 0,0 is given by 3 bar absolute. The densityof the fluid is 1.2 Kg/m3 . Find. a) x-component of velocity; b) acceleration at point (x, y) = 2,1;c) pressure gradient at the same point; d) pressure gradient along the x-axis; e) check whetherthe flow is irrotational; f) find the potential function; g) find the stream function; h) equationfor streamline and sketch few streamlines.arrow_forwardPlease answer botharrow_forward
- C (C is a constant) 4xy)=xy-2y2+2x2+C (C is a constant) O C. O d. 4(xy)=xy3-2y2+2x2+C (C is a constant) Clear my choice The stream function for a two-dimensional incompressible flow field is y = - 2(x-y), what is the corresponding velocity potential equal? Oa. p = 2(x - y) + C O b. p = 2(x + y) + C p = (x + y) + C O d. p = (x - y) + C Clear my choice Consider a steady two-dimensional, incompressible flow of a Newtonian fluid with the veloc -x and v = y – x, Find the pressure field P(x, y) if the pressure at point O (x= 0, y = field: u = is equal to PO and the velocity field satisfies the Navier-Stokes equations.arrow_forwardA incompressible, steady, velocity field is given by the following components in the x-y plane: u = 0.205 + 0.97x + 0.851y ; v = v0 + 0.5953x - 0.97y How would I calculated the acceleration field (ax and ay), and the acceleration at the point, v0= -1.050 ? Any help would be greatly appreciated :)arrow_forward1. For a velocity field described by V = 2x2i − zyk, is the flow two- or threedimensional? Incompressible? 2. For an Eulerian flow field described by u = 2xyt, v = y3x/3, w = 0, find the slope of the streamline passing through the point [2, 4] at t = 2. 3. Find the angle the streamline makes with the x-axis at the point [-1, 0.5] for the velocity field described by V = −xyi + 2y2jarrow_forward
- Fluid mechanics problem Must draw a control volume for this problemarrow_forwardQuestion 2 (Potential flow) a) The velocity component of an incompressible and 2-dimensional flow is given by Determine i. ii. iii. u = -x + 4y v = 2x - y The resultant velocity at point (-1m, 1m) The stream function The velocity potentialarrow_forwarda. Given the velocity field u=(u,v,w) in Cartesian coordinates with u=2x+y, v=2zt, w=0. i. Find the equations of the corresponding streamlines (Eulerian concept) ii. Find the equations of the corresponding particle paths, i.e., the pathlines (Lagrangian concept). b. Show that the Vu=0 everywhere implies that volumes are conserved, i.e., the volume of red particles at t-0 is the same as at t=t. Hint: Write out what you must prove and use the theorems to get there.arrow_forward
- 4. Consider the steady, two-dimensional velocity field given by: u = 2xy-y²; v=x-y². Show that it is a possible 2d incompressible flow. Find the component of acceleration in x direction of a fluid particle at point (x, y) = (1,2)arrow_forwardCurrently stuck on a StreamLine Problem, Need help to solve this. Thank you!arrow_forwardnavier stokesarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY