Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Question
Please show all work!!
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Similar questions
- 2. The table below shows experimental data for the shape and pressure distribution on the upper and lower surface of an airfoil at zero angle of attack. X 0 0.25 0.5 0.75 1 Y Fx = Yu 0 0.0952 0.0922 0.0588 0 (Pu dYu dx - Calculate the drag and lift force on the airfoil by numerically evaluating the integrals Fy (P₁-P₂)dx = √ ( P₁ - 1 Pi Y₁ 0 -0.0254 -0.0144 -0.0052 0 dv) Y = Yu (x) dx y = Ye (x) Pu 1.000 -1.640 -0.786 -0.212 0 x Pi 1.000 0.589 0.426 0.322 0 Use finite difference approximations of the derivatives and the composite Simpson's rule to evaluate the integrals. Hint: Use central differences to estimate the derivatives wherever possible since they are more accurate than forward or backward differences.arrow_forward4arrow_forward2. The table below shows experimental data for the shape and pressure distribution on the upper and lower surface of an airfoil at zero angle of attack. X 0 0.25 0.5 0.75 1 Yu 0 0.0952 0.0922 0.0588 0 Fx = dYu dx 5 Y₁ 0 -0.0254 -0.0144 -0.0052 0 PL Pd) d: dx Y = Yu (x) Calculate the drag and lift force on the airfoil by numerically evaluating the integrals = S₁² ( P₂₁ = ['(P₁ - F (P₁ - Pu)dx 0 y = Y₂ (x) Pu 1.000 -1.640 -0.786 -0.212 0 Fy x Pi 1.000 0.589 0.426 0.322 0 Use finite difference approximations of the derivatives and the composite Simpson's rule to evaluate the integrals. Hint: Use central differences to estimate the derivatives wherever possible since they are more accurate than forward or backward differences.arrow_forward
- Please show all work!!arrow_forwardA NACA 2412 airfoil with a chord of 0.64m is flying in an airstream of standard sea level conditions. The freestream velocity is 70 m/s. Given the lift per unit span is 1,254 N/m. By using the experimental data for NACA 2412 data plot in Figure Q1c, investigatethe angle of attack of the airfoil and the analyze the value of drag per unit spanof the airfoil. Given that at standard sea level, ?=1.789×10-5 kg/m.s.arrow_forwardPlease show all workarrow_forward
- Consider the following NACA airfoils: 2412, 23012, 23021 a. For each of these airfoils, find the L/D ratio for angle of attack of 0, 4, 8 and 12 b. For each airfoil find the angle of maximum L/D and find the stall angle c. Find which airfoil will provide the maximum lift for any given geometry and flow conditionsarrow_forwardCorrectly solve it.arrow_forwardAerodynamic Model: - Circular Disk Inside Dia= 40 mm Outside Dia= 80 mm • Angle of Attack= 15 Degree • Lift Force= 0.38 N • Drag Force=0.40 N • Wind Velocity= 20 m/sec Air Temperature= 30 °C (Note: Take Air Density at 30 °C) Required: - Find Lift and Drag Coefficient at 15 Degree Attack Angle.arrow_forward
- 4. Write down the lift curve equation (lift coefficient versus angle of attack) according to the thin airfoil theory. What is the amount of the lift curve slope for a thin airfoil ? NACA 2412 airfoil Eg. (4,57) C 2.0 - 1.e 1.2 Lift coefficient 0.8 0.4 -0.4 Eg. (4,64) -0.1 Moment coefficient -0.8 -0.2 -1.2 -0.3 Re - 3.1 X 10 O Re- 8.9 x 10 -0.4 16 a, degrees de; = ? daarrow_forwardQustion. An aircraft is flying in level flight at a speed of 200 km/h through air (density, p = 1.2 kg/m³, and viscosity, μ = 1.6 x 10-5 N-s/m²). The lift coefficient at this speed is 0.4 and the drag coefficient is 0.0065. The mass of the aircraft is 800 kg. The effective lift area of the aircraft NOTE= Do not give wrong answer I will dislike , If not sure skip itarrow_forwardAn airplane with a NACA 23012 airfoil cruises at 150 m/s at an altitude of 6000 m. The airfoil has an aspect ratio of 10 with a span of 36 m. Using the airfoil data as in Fig. 3, determine the lift and drag forces. Then determine the power required to overcome drag. Consider the airplane flying at an angle of attack equal to 2.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY