Question
Use the time-dependent Schroedinger equation to calculate the period (in seconds) of the wavefunction for a particle of mass 9.109×10−31 kg in the ground state of a box of width 1.2×10−10 m.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 3 steps with 2 images
Knowledge Booster
Similar questions
- Show that the following function Y(0,9)= sin 0 cos e eiº is the solution of Schrödinger 1 1 equation: sin 0 21 sin 0 00 Y(0,0)= EY (0,9) and find the sin 0 dp? energy, E.arrow_forwardSolve the time-independent Schrödinger equation and determine the energy levels and the wave function of a particle in the potential a? V (x) = Vol a + 2r2 with a = const.arrow_forwardThe wave function of a particle in a one-dimensional box of width L is u(x) = A sin (7x/L). If we know the particle must be somewhere in the box, what must be the value of A?arrow_forward
- An electron moving in a box of length ‘a’. If Z1 is the wave function at x1 = a/4 with n=1 and Z2 at x = a/4 for n=2 find Z1/Z2arrow_forwardThe expectation value of a function f(x), denoted by (f(x)), is given by (f(x)) = f(x)\(x)|³dx +00 Yn(x) = where (x) is the normalised wave function. A one-dimensional box is on the x-axis in the region of 0 ≤ x ≤ L. The normalised wave functions for a particle in the box are given by -sin -8 Calculate (x) and (x²) for a particle in the nth state. n = 1, 2, 3, ....arrow_forwardThe following Eigen function is a typical solution of the time-independent Schrödinger equation and satisfies boundary conditions for a particle in a confined space of a certain length. y(x) = sin (~77) (a) Plot the wave function as a function of x for L = 30 cm and n = 1, 2, 3 and 4. Note: You will need to have 4 plots in the same graph. (b) On a separate graph, plot the probability density (112) as a function of x using the conditions specified in part (a). Note: You will need to have 4 plots in the same graph. (c) Report your observations for parts (a) and (b)arrow_forward
arrow_back_ios
arrow_forward_ios