Advanced Engineering Mathematics
Advanced Engineering Mathematics
10th Edition
ISBN: 9780470458365
Author: Erwin Kreyszig
Publisher: Wiley, John & Sons, Incorporated
Bartleby Related Questions Icon

Related questions

Question

I attached an example of how to solve the problem accordingly. Please follow along. Thank you.

Use the Principle of Mathematical Induction (PMI) to prove the
following for all natural numbers n.
1+2+3+...+n=
n(n+1)
2
expand button
Transcribed Image Text:Use the Principle of Mathematical Induction (PMI) to prove the following for all natural numbers n. 1+2+3+...+n= n(n+1) 2
. Use the Principle of Mathematical Induction (PMI) to prove the
following for all natural numbers n.
• P(1) is
3
P(n)
3+ 11 +19++ (8n — 5) = 4n² — n (neN) Pin)
true
because
4(1)²_1=3 ✓
ころ
is true for some neN.
3 +11 +19+ - • -+ (8n −5)]=4n²_n_P(n)
•Assume P(n)
Need to prove Pin+1)
[3+11+19+---+ (8n - 5] + [8(n+1)-5] pon+1)
=4[n+1]²_[n+i]
Proof of pintl):
3+1+19+...+ (8n_5)+(8n+3)
= 4n²_n +8n-3
=4n²+7n-3
Note: 4[n+1]-[n+1] =4[n²+²n +i]-[n+i]
3
=4n² +8n++-n-1
=4n²+7+3
This proves P(n+l).
•
PMI implies (EN) P(n) is true.
A
expand button
Transcribed Image Text:. Use the Principle of Mathematical Induction (PMI) to prove the following for all natural numbers n. • P(1) is 3 P(n) 3+ 11 +19++ (8n — 5) = 4n² — n (neN) Pin) true because 4(1)²_1=3 ✓ ころ is true for some neN. 3 +11 +19+ - • -+ (8n −5)]=4n²_n_P(n) •Assume P(n) Need to prove Pin+1) [3+11+19+---+ (8n - 5] + [8(n+1)-5] pon+1) =4[n+1]²_[n+i] Proof of pintl): 3+1+19+...+ (8n_5)+(8n+3) = 4n²_n +8n-3 =4n²+7n-3 Note: 4[n+1]-[n+1] =4[n²+²n +i]-[n+i] 3 =4n² +8n++-n-1 =4n²+7+3 This proves P(n+l). • PMI implies (EN) P(n) is true. A
Expert Solution
Check Mark
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Advanced Engineering Mathematics
Advanced Math
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Wiley, John & Sons, Incorporated
Text book image
Numerical Methods for Engineers
Advanced Math
ISBN:9780073397924
Author:Steven C. Chapra Dr., Raymond P. Canale
Publisher:McGraw-Hill Education
Text book image
Introductory Mathematics for Engineering Applicat...
Advanced Math
ISBN:9781118141809
Author:Nathan Klingbeil
Publisher:WILEY
Text book image
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Text book image
Basic Technical Mathematics
Advanced Math
ISBN:9780134437705
Author:Washington
Publisher:PEARSON
Text book image
Topology
Advanced Math
ISBN:9780134689517
Author:Munkres, James R.
Publisher:Pearson,