Calculus: Early Transcendentals
Calculus: Early Transcendentals
8th Edition
ISBN: 9781285741550
Author: James Stewart
Publisher: Cengage Learning
Bartleby Related Questions Icon

Related questions

Question
**Using the Law of Cosines to Determine the Largest Angle**

To solve for the largest angle in a triangle given the side lengths, we use the Law of Cosines. For a triangle with sides \(a = 22m\), \(b = 24m\), and \(c = 26m\), find the largest angle. Round your answers to the nearest tenth.

### Options:
- \(C = 68.7^\circ\)
- \(C = 98.3^\circ\)
- \(B = 78.3^\circ\)
- \(B = 88.3^\circ\)

### Steps to Solve:
1. **Identify the largest side:**
   - In this triangle, \(c = 26m\) is the longest side.

2. **Apply the Law of Cosines:**
   \[
   c^2 = a^2 + b^2 - 2ab \cos(C)
   \]
   Substituting the given values:
   \[
   26^2 = 22^2 + 24^2 - 2 \cdot 22 \cdot 24 \cdot \cos(C)
   \]
   Simplify the equation:
   \[
   676 = 484 + 576 - 1056 \cos(C)
   \]
   Combine like terms:
   \[
   676 = 1060 - 1056 \cos(C)
   \]
   Solve for \(\cos(C)\):
   \[
   676 - 1060 = -1056 \cos(C)
   \]
   \[
   -384 = -1056 \cos(C)
   \]
   \[
   \cos(C) = \frac{384}{1056}
   \]
   \[
   \cos(C) \approx 0.3636
   \]

3. **Find angle \(C\) using inverse cosine:**
   \[
   C \approx \cos^{-1}(0.3636) \approx 68.7^\circ
   \]

### Conclusion:
The largest angle in the triangle with sides \(a = 22m\), \(b = 24m\), and \(c = 26m\) is approximately \(C = 98.3^\circ\), not any of the other provided options.

### Explanation of the Answer:
The correct answer aligns with
expand button
Transcribed Image Text:**Using the Law of Cosines to Determine the Largest Angle** To solve for the largest angle in a triangle given the side lengths, we use the Law of Cosines. For a triangle with sides \(a = 22m\), \(b = 24m\), and \(c = 26m\), find the largest angle. Round your answers to the nearest tenth. ### Options: - \(C = 68.7^\circ\) - \(C = 98.3^\circ\) - \(B = 78.3^\circ\) - \(B = 88.3^\circ\) ### Steps to Solve: 1. **Identify the largest side:** - In this triangle, \(c = 26m\) is the longest side. 2. **Apply the Law of Cosines:** \[ c^2 = a^2 + b^2 - 2ab \cos(C) \] Substituting the given values: \[ 26^2 = 22^2 + 24^2 - 2 \cdot 22 \cdot 24 \cdot \cos(C) \] Simplify the equation: \[ 676 = 484 + 576 - 1056 \cos(C) \] Combine like terms: \[ 676 = 1060 - 1056 \cos(C) \] Solve for \(\cos(C)\): \[ 676 - 1060 = -1056 \cos(C) \] \[ -384 = -1056 \cos(C) \] \[ \cos(C) = \frac{384}{1056} \] \[ \cos(C) \approx 0.3636 \] 3. **Find angle \(C\) using inverse cosine:** \[ C \approx \cos^{-1}(0.3636) \approx 68.7^\circ \] ### Conclusion: The largest angle in the triangle with sides \(a = 22m\), \(b = 24m\), and \(c = 26m\) is approximately \(C = 98.3^\circ\), not any of the other provided options. ### Explanation of the Answer: The correct answer aligns with
Expert Solution
Check Mark
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning
Text book image
Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman
Text book image
Precalculus
Calculus
ISBN:9780135189405
Author:Michael Sullivan
Publisher:PEARSON
Text book image
Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning