Use the indicated entry as the pivot and perform the pivoting. X₁ X2 X3 S₁ z $2 1 2 4 1 0 0 66 2 2 1 0 1 0 54 6 -7 -5 0 0 1 0 Complete the following simplex tableau to show the result of the pivoting. x₁ X₂ X3 (Simplify your answers.) min 4 4 =

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
### Simplex Method for Linear Programming

For this educational example, we will demonstrate how to perform a pivot operation in the simplex method. Below is a simplex tableau that requires pivoting to proceed towards finding the optimal solution.

---

#### Initial Simplex Tableau:
\[
\begin{array}{c|cccccc|c}
   & x_1 & x_2 & x_3 & s_1 & s_2 & z & \\
\hline
   & 1 & 2 & 4 & 1 & 0 & 0 & 66 \\
   & \textcolor{cyan}{2} & \textcolor{cyan}{2} & 1 & 0 & 1 & 0 & 54 \\
   & -6 & -7 & -5 & 0 & 0 & 1 & 0 \\
\end{array}
\]

The entry in cyan (2) is chosen as the pivot element.

---

#### Completing the Simplex Tableau:
Following the standard simplex algorithm steps, we pivot around the selected element to form the new simplex tableau.

**Step-by-Step Explanation:**
1. **Pivot on the chosen element (2) at row 2, column 1 (x_1):**
   - Divide the entire pivot row by the pivot element to make the pivot element equivalent to 1.

2. **Perform row operations to make all other entries in the pivot column (x_1) equal to 0:**
   - Update the remaining rows by subtracting appropriate multiples of the new pivot row.

---

#### Resultant Simplex Tableau:
\[
\begin{array}{c|cccccc|c}
   & x_1 & x_2 & x_3 & s_1 & s_2 & z & \\
\hline
   & 1 & 2 & 4 & 1 & 0 & 0 & 66 \\
   & 1 & 1 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & 27 \\
   & -6 & -7 & -5 & 0 & 0 & 1 & 0 \\
\end{array}
\]

**Note:**
- The diagram above illustrates the initial simplex tableau and requires you to complete the tableau after performing the pivot operation.
- The tableau displays variables \( x_1
Transcribed Image Text:### Simplex Method for Linear Programming For this educational example, we will demonstrate how to perform a pivot operation in the simplex method. Below is a simplex tableau that requires pivoting to proceed towards finding the optimal solution. --- #### Initial Simplex Tableau: \[ \begin{array}{c|cccccc|c} & x_1 & x_2 & x_3 & s_1 & s_2 & z & \\ \hline & 1 & 2 & 4 & 1 & 0 & 0 & 66 \\ & \textcolor{cyan}{2} & \textcolor{cyan}{2} & 1 & 0 & 1 & 0 & 54 \\ & -6 & -7 & -5 & 0 & 0 & 1 & 0 \\ \end{array} \] The entry in cyan (2) is chosen as the pivot element. --- #### Completing the Simplex Tableau: Following the standard simplex algorithm steps, we pivot around the selected element to form the new simplex tableau. **Step-by-Step Explanation:** 1. **Pivot on the chosen element (2) at row 2, column 1 (x_1):** - Divide the entire pivot row by the pivot element to make the pivot element equivalent to 1. 2. **Perform row operations to make all other entries in the pivot column (x_1) equal to 0:** - Update the remaining rows by subtracting appropriate multiples of the new pivot row. --- #### Resultant Simplex Tableau: \[ \begin{array}{c|cccccc|c} & x_1 & x_2 & x_3 & s_1 & s_2 & z & \\ \hline & 1 & 2 & 4 & 1 & 0 & 0 & 66 \\ & 1 & 1 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & 27 \\ & -6 & -7 & -5 & 0 & 0 & 1 & 0 \\ \end{array} \] **Note:** - The diagram above illustrates the initial simplex tableau and requires you to complete the tableau after performing the pivot operation. - The tableau displays variables \( x_1
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,