![Chemistry](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
Chemistry
10th Edition
ISBN: 9781305957404
Author: Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
![**Calculating the Standard Free Energy Change for a Redox Reaction**
To calculate the standard free energy change (ΔG°) in kJ for the given redox reaction, we use standard reduction potentials.
**Reaction:**
\[ \text{Ni}^{2+} (aq) + \text{Pb} (s) \rightarrow \text{Ni} (s) + \text{Pb}^{2+} (aq) \]
Below are the standard reduction potentials (\(E^\circ_{\text{red}}\)) for the relevant half-reactions:
\[
\begin{array}{c|c}
\text{Half-Reaction} & E^\circ_{\text{red}}\\
\hline
\text{Ni}^{2+} (aq) + 2e^- \rightarrow \text{Ni} (s) & -0.250 \, \text{V} \\
\text{Pb}^{2+} (aq) + 2e^- \rightarrow \text{Pb} (s) & -0.126 \, \text{V} \\
\end{array}
\]
**Calculations:**
\[
\Delta G^\circ = \boxed{\phantom{000}} \text{ kJ}
\]
The equilibrium constant \(K\) for this reaction would be:
\[ K \text{ is } \boxed{\text{greater or less}} \text{ than one.} \]
**Explanation:**
The information provided shows the standard reduction potentials for nickel and lead in their respective half-reactions. The differences in these potentials allow us to determine the cell potential (E°) of the overall reaction, which can then be used to calculate the Gibbs free energy change. The value of \(K\) will indicate if the reaction favors products or reactants.](https://content.bartleby.com/qna-images/question/2ad64212-e120-4fe2-97f2-e4e87c5c792a/0dee2a02-9aff-48f5-9ac4-41ec8ff1ba6d/uhpu65_thumbnail.png)
Transcribed Image Text:**Calculating the Standard Free Energy Change for a Redox Reaction**
To calculate the standard free energy change (ΔG°) in kJ for the given redox reaction, we use standard reduction potentials.
**Reaction:**
\[ \text{Ni}^{2+} (aq) + \text{Pb} (s) \rightarrow \text{Ni} (s) + \text{Pb}^{2+} (aq) \]
Below are the standard reduction potentials (\(E^\circ_{\text{red}}\)) for the relevant half-reactions:
\[
\begin{array}{c|c}
\text{Half-Reaction} & E^\circ_{\text{red}}\\
\hline
\text{Ni}^{2+} (aq) + 2e^- \rightarrow \text{Ni} (s) & -0.250 \, \text{V} \\
\text{Pb}^{2+} (aq) + 2e^- \rightarrow \text{Pb} (s) & -0.126 \, \text{V} \\
\end{array}
\]
**Calculations:**
\[
\Delta G^\circ = \boxed{\phantom{000}} \text{ kJ}
\]
The equilibrium constant \(K\) for this reaction would be:
\[ K \text{ is } \boxed{\text{greater or less}} \text{ than one.} \]
**Explanation:**
The information provided shows the standard reduction potentials for nickel and lead in their respective half-reactions. The differences in these potentials allow us to determine the cell potential (E°) of the overall reaction, which can then be used to calculate the Gibbs free energy change. The value of \(K\) will indicate if the reaction favors products or reactants.
Expert Solution
![Check Mark](/static/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 3 steps with 11 images
![Blurred answer](/static/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Calculate the standard cell potential, E, for the equation Cr(s) + F,(g) → Cr**(aq) + 2F (aq) Use the table of standard reduction potentials. E• cell %3D Varrow_forwardUse standard reduction potentials to calculate the standard free energy change in kJ for the reaction: 31₂ (s) + 2Cr(s) → 61¯(s) + 2Cr³+ (aq) I₂ (s) + 2e¯ → 21¯ (s) Cr³+ r³+ (aq) + 3e¯ → Cr(s) E red kJ AGO = Eº = = 0.535 V red = -0.740 Varrow_forwardWhat is the value of the equilibrium constant at 25 oC for the reaction between the pair: Ag(s) and Mn2+(aq) to give Ag+(aq) and Mn(s) Use the reduction potential values for Ag+(aq) of +0.80 V and for Mn2+(aq) of -1.18 Varrow_forward
- Use standard reduction potentials to calculate the standard free energy change in kJ for the reaction: 2+ Cd²+ (aq) + Zn(s) → Cd(s) + Zn²+ (aq) AG⁰ = Cd2+ (aq) +2e → Cd(s) E red Zn²+ (aq) +2e → Zn(s) E red K for this reaction would be greater less = -0.403 V -0.763 V kJ than one.arrow_forwardRank the following in increasing ability as oxidizing agents. The reduction potentials of all species are shown below. Cl, (g) + 2e → 2C1 (aq) E° = 1.3583 V Ag*(aq) + le Cu²+ (aq) + 2e¯ → Ag(s) E° = 0.7996 V → Cu(s) E° = 0.342 V Sn²+ (aq) + 2e → Sn(s) E° = - 0.136 V к"(ад) + 1е — → K(s) E° - 2.95 V 1st attemptarrow_forwardWhat is the equilibrium constant for the dissolution of copper (II) hydroxide: Cu(OH)₂ (s) Given the standard reduction potentials Cu(OH)₂ (aq) + e- → Cu (s) + OH¯ (aq) Cu²+ (aq) + e¯ →→ Cu (s) O 5.16 x 10^-9 O 1.63 x 10^3 O 1.93 x 10^8 O 6.12 x 10^-4 Cu²+ (aq) + OH¯ (aq) O 2.20 x 10^-20 EO = -0.15 V Eº = +0.34 Varrow_forward
- Use standard reduction potentials to calculate the standard free energy change in kJ for the reaction: 2+ Co²+ (aq) + Zn(s) → Co(s) + Zn²+ (aq) red Co²+ (aq) + 2e → Co(s) Ee Zn²+ (aq) + 2e¯ → Zn(s) Ee red AGO K for this reaction would be kJ = -0.280 V -0.763 V than one.arrow_forwardJust the last one. And use table if neededarrow_forwardUse standard reduction potentials to calculate the standard free energy change in kJ for the reaction: Pb²+ (aq) + Cu(s) - → Pb(s) + Cu²+ (aq) AG° Pb²+ (aq) + 2e¯¯ → Pb(s) Ee Cu²+ (aq) + 2e¯ → Cu(s) Fre red = kJ K for this reaction would be = -0.126 V = 0.337 V + than one.arrow_forward
- Use standard reduction potentials to calculate the standard free energy change in kJ for the reaction: 2Cu²+ u²+ (aq) + 21- (aq) → 2Cut (aq) + 12 (8) 2+ Cu²+ (aq) + e → Cut (aq) Ee red I2 (s) +2e → 21¯ (aq) AGO = K for this reaction would be kJ E red - 0.153 V 0.535 V than one.arrow_forwardUse standard reduction potentials to calculate the standard free energy change in kJ for the reaction: 3Cu2+(aq) + 2Cr(s)- →3Cu(s) + 2Cr3+(aq) Answer: kJ K for this reaction would be than one.arrow_forwardConsider a cell that uses the redox reaction: 3 Na (s) + La3+ (aq) → 3 Na+ (aq) + La (s). Calculate the equilibrium constant (K) for this reaction at 25 ºC, given the following standard reduction potentials: La3+ (aq) + 3 e- → La (s) E° = -2.37 V Na+ (aq) + e- → Na (s) E° = -2.71 V 1.8 x 10-6 5.7 x 10-18 5.6 x 105 1.7 x 1017arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY