Use Newton method to find a root in each of the following functions: f(xn) f'(xn) (1) f(x) = tan x - x, TL, 3TT ~ Xn+1 = Xn -

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%

newton method

Exercise.7
Use Newton method to find a root in each of the following functions:
f(xn)
f'(xn)
(1) f(x) = tan x —
-X,
3π
2
Xn+1 = Xn-
Transcribed Image Text:Exercise.7 Use Newton method to find a root in each of the following functions: f(xn) f'(xn) (1) f(x) = tan x — -X, 3π 2 Xn+1 = Xn-
Expert Solution
Step 1: description of given data:

We are given the function f left parenthesis x right parenthesis equals tan x minus xopen square brackets straight pi comma space fraction numerator 3 straight pi over denominator 2 end fraction close square brackets 

Our aim is to find the root of given function using Newton Raphson Method.

Formula:

x subscript n plus 1 end subscript equals x subscript n minus fraction numerator f left parenthesis x subscript n right parenthesis over denominator f apostrophe left parenthesis x subscript n right parenthesis end fraction

open square brackets straight pi comma space fraction numerator 3 straight pi over denominator 2 end fraction close square brackets almost equal to open square brackets 3.14159 comma space 4.71239 close square brackets

steps

Step by step

Solved in 4 steps with 27 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,