Use Laplace transform to solve the following initial value problem y" + 4y = 4, y(0) = -5, y'(0) = –4 Express your answer as the Laplace transform of y and use partial fraction decomposition where possible.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%

Pls help on these two questions. PLS I BEG DO BOTH OF THEM. 

Use Laplace transform to solve the following initial value problem
y" + 4y = 4, y(0) = –5, y'(0) = –4
Express your answer as the Laplace transform of y and use partial fraction decomposition where possible.
Transcribed Image Text:Use Laplace transform to solve the following initial value problem y" + 4y = 4, y(0) = –5, y'(0) = –4 Express your answer as the Laplace transform of y and use partial fraction decomposition where possible.
2s + 2
Find the inverse Laplace transform of
(s – 3)2 + 4
est cos(t) + et sin(t)
e* cos(2t) + e* sin(2t)
2et cos(2t) + 4et sin(2t)
2et cos(3t) + 4et sin(3t)
Transcribed Image Text:2s + 2 Find the inverse Laplace transform of (s – 3)2 + 4 est cos(t) + et sin(t) e* cos(2t) + e* sin(2t) 2et cos(2t) + 4et sin(2t) 2et cos(3t) + 4et sin(3t)
Expert Solution
Step 1

Given differential equation is y''+4y=4 and y0=5,y'0=4

We have to solve the given initial value problem by using Laplace transformation.

Use Ly''=s2Yssy0y'0 and Ly=Ys

Now, use Laplace transform of both side in y''+4y=4

Ly''+4y=L4Ly''+4Ly=4sSince, L4=4ss2Yssy0y'0+4Ys=4ss2Yss54+4Ys=4sUse y0=5,y'0=4s2Ys+5s+4+4Ys=4ss2+4Ys+5s+4=4ss2+4Ys=4s5s+4Ys=4ss2+45s+4s2+4

Hence, Ys=4ss2+45s+4s2+4

Now, taking a pretrial fraction of 4ss2+4, which is given below

4ss2+4=1sss2+4

And taking a pretrial fraction of 5s+4s2+4, which is given below

5s+4s2+4=5ss2+4+4s2+4

Therefore, 

Ys=1sss2+45ss2+4+4s2+4Ys=1sss2+45ss2+44s2+4

Now, taking inverse Laplace transform, which is given below

L1Ys=L11sss2+45ss2+44s2+4yt=L11sL1ss2+45L1ss2+4L14s2+4Since, L1Ys=ytyt=Htcos2t5cos2t2sin2t

Hence, yt=Htcos2t5cos2t2sin2t

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,