Use Hess's law to calculate the standard heat of the water-gas shift reaction, CO(8) + H20(g) → CO2(8) + H2(g) using the two data sets given below. $1: CO(8) + H20(1) → CO2(g)+H2(8): AH, = 1226 But /lbmol H20(1) → H20(g) : AHvap = 18935 But /lbmol $2: CO(g) +1/202(g) →CO2(g): AH, =-121740 But /lbmol H2(g)+1/202(8) → H20(g) : AH, =- 104040 But /lbmol

Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
icon
Related questions
Question
Use Hess’s law to calculate the standard heat of the water-gas shift reaction,

\[ \text{CO(g) + H}_2\text{O(g)} \rightarrow \text{CO}_2\text{(g)} + \text{H}_2\text{(g)} \]

using the two data sets given below.

§1:

1. \(\text{CO(g) + H}_2\text{O(l)} \rightarrow \text{CO}_2\text{(g)} + \text{H}_2\text{(g)}\) : \(\Delta H_r = 1226 \, \text{Btu/lbmol}\)

2. \(\text{H}_2\text{O(l)} \rightarrow \text{H}_2\text{O(g)}\) : \(\Delta H_{vap} = 18935 \, \text{Btu/lbmol}\)

§2:

1. \(\text{CO(g) + } \frac{1}{2}\text{O}_2\text{(g)} \rightarrow \text{CO}_2\text{(g)}\) : \(\Delta H_r = -121740 \, \text{Btu/lbmol}\)

2. \(\text{H}_2\text{(g) + } \frac{1}{2}\text{O}_2\text{(g)} \rightarrow \text{H}_2\text{O(g)}\) : \(\Delta H_r = -104040 \, \text{Btu/lbmol}\)
Transcribed Image Text:Use Hess’s law to calculate the standard heat of the water-gas shift reaction, \[ \text{CO(g) + H}_2\text{O(g)} \rightarrow \text{CO}_2\text{(g)} + \text{H}_2\text{(g)} \] using the two data sets given below. §1: 1. \(\text{CO(g) + H}_2\text{O(l)} \rightarrow \text{CO}_2\text{(g)} + \text{H}_2\text{(g)}\) : \(\Delta H_r = 1226 \, \text{Btu/lbmol}\) 2. \(\text{H}_2\text{O(l)} \rightarrow \text{H}_2\text{O(g)}\) : \(\Delta H_{vap} = 18935 \, \text{Btu/lbmol}\) §2: 1. \(\text{CO(g) + } \frac{1}{2}\text{O}_2\text{(g)} \rightarrow \text{CO}_2\text{(g)}\) : \(\Delta H_r = -121740 \, \text{Btu/lbmol}\) 2. \(\text{H}_2\text{(g) + } \frac{1}{2}\text{O}_2\text{(g)} \rightarrow \text{H}_2\text{O(g)}\) : \(\Delta H_r = -104040 \, \text{Btu/lbmol}\)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
DOF, Stream analysis and calculations
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Introduction to Chemical Engineering Thermodynami…
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Process Dynamics and Control, 4e
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:
9781119285915
Author:
Seborg
Publisher:
WILEY
Industrial Plastics: Theory and Applications
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning
Unit Operations of Chemical Engineering
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The