Advanced Engineering Mathematics
Advanced Engineering Mathematics
10th Edition
ISBN: 9780470458365
Author: Erwin Kreyszig
Publisher: Wiley, John & Sons, Incorporated
Bartleby Related Questions Icon

Related questions

Question
### Determinant of a Matrix Using Cofactor Expansion

To find the determinant of a given matrix using cofactor expansion, follow the detailed example below:

In this case, we will work with the following 5x5 matrix:

\[ 
\begin{bmatrix}
3 & 2 & 0 & 0 & 3 \\
0 & 1 & 5 & 3 & 2 \\
0 & 0 & 4 & 6 & 5 \\
0 & 0 & 2 & 4 & 5 \\
0 & 0 & 0 & 0 & 7 
\end{bmatrix}
\]

### Step-by-step procedure:

1. **Identify Rows and Columns:** Choose any row or column to expand along. It is often helpful to pick a row or column with the most zeros to simplify calculations.
   
2. **Expand Along a Row or Column:** For this example, let's expand along the first row:
   
   \[
   \text{det}(A) = 3 \cdot \text{det}\begin{bmatrix}
   1 & 5 & 3 & 2 \\
   0 & 4 & 6 & 5 \\
   0 & 2 & 4 & 5 \\
   0 & 0 & 0 & 7 
   \end{bmatrix}
   - 2 \cdot \text{det}\begin{bmatrix}
   0 & 5 & 3 & 2 \\
   0 & 4 & 6 & 5 \\
   0 & 2 & 4 & 5 \\
   0 & 0 & 0 & 7 
   \end{bmatrix}
   + 0  - 0 + 0 \cdot \text{det of appropriate sub-matrix}
   \]

3. **Determinant of Sub-matrices:** Continue expanding determinants of resulting sub-matrices using the same method until reaching a 2x2 matrix, where the determinant can be easily calculated:
   
   For example:
   \[
   \text{det}\begin{bmatrix}
   1 & 5 & 3 & 2 \\
   0 & 4 & 6 & 5 \\
   0 & 2 & 4 & 5 \\
   0
expand button
Transcribed Image Text:### Determinant of a Matrix Using Cofactor Expansion To find the determinant of a given matrix using cofactor expansion, follow the detailed example below: In this case, we will work with the following 5x5 matrix: \[ \begin{bmatrix} 3 & 2 & 0 & 0 & 3 \\ 0 & 1 & 5 & 3 & 2 \\ 0 & 0 & 4 & 6 & 5 \\ 0 & 0 & 2 & 4 & 5 \\ 0 & 0 & 0 & 0 & 7 \end{bmatrix} \] ### Step-by-step procedure: 1. **Identify Rows and Columns:** Choose any row or column to expand along. It is often helpful to pick a row or column with the most zeros to simplify calculations. 2. **Expand Along a Row or Column:** For this example, let's expand along the first row: \[ \text{det}(A) = 3 \cdot \text{det}\begin{bmatrix} 1 & 5 & 3 & 2 \\ 0 & 4 & 6 & 5 \\ 0 & 2 & 4 & 5 \\ 0 & 0 & 0 & 7 \end{bmatrix} - 2 \cdot \text{det}\begin{bmatrix} 0 & 5 & 3 & 2 \\ 0 & 4 & 6 & 5 \\ 0 & 2 & 4 & 5 \\ 0 & 0 & 0 & 7 \end{bmatrix} + 0 - 0 + 0 \cdot \text{det of appropriate sub-matrix} \] 3. **Determinant of Sub-matrices:** Continue expanding determinants of resulting sub-matrices using the same method until reaching a 2x2 matrix, where the determinant can be easily calculated: For example: \[ \text{det}\begin{bmatrix} 1 & 5 & 3 & 2 \\ 0 & 4 & 6 & 5 \\ 0 & 2 & 4 & 5 \\ 0
Expert Solution
Check Mark
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Advanced Engineering Mathematics
Advanced Math
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Wiley, John & Sons, Incorporated
Text book image
Numerical Methods for Engineers
Advanced Math
ISBN:9780073397924
Author:Steven C. Chapra Dr., Raymond P. Canale
Publisher:McGraw-Hill Education
Text book image
Introductory Mathematics for Engineering Applicat...
Advanced Math
ISBN:9781118141809
Author:Nathan Klingbeil
Publisher:WILEY
Text book image
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Text book image
Basic Technical Mathematics
Advanced Math
ISBN:9780134437705
Author:Washington
Publisher:PEARSON
Text book image
Topology
Advanced Math
ISBN:9780134689517
Author:Munkres, James R.
Publisher:Pearson,