Use an addition or subtraction formula to find the exact value in simplest form. Rationalize your denominator, if necessary. G 35π 5π 35π + sin 5T sin 0/6 18 18 18 COS COS 00 X

Trigonometry (11th Edition)
11th Edition
ISBN:9780134217437
Author:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Chapter1: Trigonometric Functions
Section: Chapter Questions
Problem 1RE: 1. Give the measures of the complement and the supplement of an angle measuring 35°.
icon
Related questions
Question
**Title: Solving Trigonometric Expressions Using Addition and Subtraction Formulas**

**Objective:**
Learn how to use addition or subtraction formulas to find the exact value of trigonometric expressions in the simplest form. Rationalize the denominator if necessary.

**Problem:**
Use an addition or subtraction formula to find the exact value in simplest form. Rationalize your denominator, if necessary.

**Expression:**
\[ \cos\left(\frac{35\pi}{18}\right) \cos\left(\frac{5\pi}{18}\right) + \sin\left(\frac{35\pi}{18}\right) \sin\left(\frac{5\pi}{18}\right) \]

**Solution:**
To solve this, we can use the angle addition formula for cosine, given as:

\[ \cos(A + B) = \cos(A)\cos(B) - \sin(A)\sin(B) \]

However, note that the given expression resembles the form:

\[ \cos(A)\cos(B) + \sin(A)\sin(B) = \cos(A - B) \]

So, to proceed, we set \( A = \frac{35\pi}{18} \) and \( B = \frac{5\pi}{18} \). According to the formula:

\[ \cos\left(\frac{35\pi}{18} - \frac{5\pi}{18}\right) = \cos\left(\frac{30\pi}{18}\right) = \cos\left(\frac{5\pi}{3}\right) \]

Now, simplify \( \cos\left(\frac{5\pi}{3}\right) \).

Since \( \frac{5\pi}{3} = 2\pi - \frac{\pi}{3} \),

\[ \cos\left(\frac{5\pi}{3}\right) = \cos\left(2\pi - \frac{\pi}{3}\right) = \cos\left(\frac{\pi}{3}\right) \]

Finally, since \( \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \),

\[ \cos\left(\frac{5\pi}{3}\right) = \frac{1}{2} \]

Therefore, the exact value in simplest form is:

\[ \boxed{\frac{1}{2}}
Transcribed Image Text:**Title: Solving Trigonometric Expressions Using Addition and Subtraction Formulas** **Objective:** Learn how to use addition or subtraction formulas to find the exact value of trigonometric expressions in the simplest form. Rationalize the denominator if necessary. **Problem:** Use an addition or subtraction formula to find the exact value in simplest form. Rationalize your denominator, if necessary. **Expression:** \[ \cos\left(\frac{35\pi}{18}\right) \cos\left(\frac{5\pi}{18}\right) + \sin\left(\frac{35\pi}{18}\right) \sin\left(\frac{5\pi}{18}\right) \] **Solution:** To solve this, we can use the angle addition formula for cosine, given as: \[ \cos(A + B) = \cos(A)\cos(B) - \sin(A)\sin(B) \] However, note that the given expression resembles the form: \[ \cos(A)\cos(B) + \sin(A)\sin(B) = \cos(A - B) \] So, to proceed, we set \( A = \frac{35\pi}{18} \) and \( B = \frac{5\pi}{18} \). According to the formula: \[ \cos\left(\frac{35\pi}{18} - \frac{5\pi}{18}\right) = \cos\left(\frac{30\pi}{18}\right) = \cos\left(\frac{5\pi}{3}\right) \] Now, simplify \( \cos\left(\frac{5\pi}{3}\right) \). Since \( \frac{5\pi}{3} = 2\pi - \frac{\pi}{3} \), \[ \cos\left(\frac{5\pi}{3}\right) = \cos\left(2\pi - \frac{\pi}{3}\right) = \cos\left(\frac{\pi}{3}\right) \] Finally, since \( \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \), \[ \cos\left(\frac{5\pi}{3}\right) = \frac{1}{2} \] Therefore, the exact value in simplest form is: \[ \boxed{\frac{1}{2}}
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Trigonometry (11th Edition)
Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
Algebra and Trigonometry
Algebra and Trigonometry
Trigonometry
ISBN:
9781938168376
Author:
Jay Abramson
Publisher:
OpenStax
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781337278461
Author:
Ron Larson
Publisher:
Cengage Learning