College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An infinitely long filament on the x-axis carries a current of 10 mA in the k direction. FindH at P(3, 2,1) marrow_forwardA set of wires arranged on the corners of a square of side length ?s each carry a different current, as shown in the figure. The wire in the lower left corner carries a constant current ? in the k-direction. The wire in the upper left corner carries a current I→1=−Ik, the wire in the upper right corner carries a current I→2=−12Ik, and the lower right wire carries a current I→3=I2k. Determine the vector expression for the net magnetic force FB→ per unit length L on the lower left wire using ??? unit vector notation. Express your answer in terms of the permeability μ0 of free space, s, ?, and numerical constants.arrow_forwardA copper wire with a square cross-section (side length 5.00 µm) is next to an iron wire with a rightward current of 3.00 A. The two wires are parallel over a region of 20.0 cm, where they are 1.60 cm apart. The iron wire produces a magnetic field on the copper wire. The copper wire is connected to a 5.00 V power source, with current directed rightward. Data of copper: resistivity = 1.68 x 10-8 Ohm m; free electron number density = 8.50 x 1028/m3arrow_forward
- In the accompanying figure, the rails, connecting end pieces, and rod all have a resistance per unit length of 40/cm. The rod moves to the left at v = 3 m/s. If B = 0.65 T everywhere in the region, what is the current in the circuit (a) when a = 8 cm? (b) when a = 4.5 cm? Description of Image B Hint a. When a = 8 cm, a counterclockwise mA flows in the circuit. b. When a = = 4.5 cm, 5.48 o current of 9.75 4.0 cm X = 5.48 mA flows in the circuit. X = 9.75arrow_forwardThe two wires shown in the figure below are separated by d = 10.4 cm and carry currents of I = 5.40 A in opposite directions. Two vertical, parallel wires are separated by a distance d. To the left of the left wire is an arrow labeled I pointing up. To the right of the right wire is an arrow labeled I pointing down. A point P2 is a distance 2d to the left of the left wire, and a point P1 is a distance d to the right of the right wire. (a) Find the magnitude and direction of the net magnetic field at a point midway between the wires. magnitude ?T direction (b) Find the magnitude and direction of the net magnetic field at point P1, 10.4 cm to the right of the wire on the right. magnitude ?T direction (c) Find the magnitude and direction of the net magnetic field at point P2, 2d = 20.8 cm to the left of the wire on the left. magnitude ?T directionarrow_forwardTwo VERY LONG wires are placed along parallel lines as shown below in the picture. The wire ON THE LEFT (at X:= 0) has a current going out of the page of value, I1 ='4 A. The current on the RIGHT (at X2= d) has a current going into the page of the page of value, l2 = 6 A. The point "P" is at the location (x=6.00cm, z=10.4cm) Wire 1 Wire 2 a. Find the magnitude of the magnetic field due to wire 2 at the location of wire 1 The Biot-Savart law say the direction of the magnetic field at a field point located in a direction (from source to field point) where a source wire carries a current in the î is Pxi the direction of the magnetic field due to wire2 at the location of wire1. c. Using the formula format find the force per unit length in "I.j,k" 1, 1, x B, d. Find the magnitude of the magnetic field due to wire2 at the location of field point P e. Find the unit directions for f and î and perform the cross product to determine the direction of the magnetic field due to wire2 at the…arrow_forward
- Problem 7: A solenoid is created by wrapping a L = 35 m long wire around a hollow tube of diameter D = 4.5 cm. The wire diameter is d = 0.75 mm. The solenoid wire is then connected to a power supply so that a current of I = 4.5 A flows through the wire. Randomized Variables L= 35 m D= 4.5 cm d = 0.75 mm I= 4.5 A Part (a) Write an expression for the number of turns, N, in the solenoid. You do not need to take into account the diameter of the wire in this calculation. N = | 7 8 9. JT НOME d 1^ AL 4 5 6. a h 1 2 3 j k + END - m P VO BАСKSРАСE CLEAR DEL Submit Hint Feedback I give up! Part (b) Calculate the number of turns, N, in the solenoid. Part (c) Write an expression for the length of the solenoid (L2) in terms of the diameter of the hollow tube D, the length of the wire L and the diameter of the wire d. Assume it is constructed by using only 1 layer of loops (note that most solenoids are actually constructed with many layers, to maximize the magnetic field density). Part (d)…arrow_forwardTwo VERY LONG wires are placed along parallel lines as shown below in the picture. LEFT (at Xı= 0) has a current going out of the page of value, I = 4 A. The current on the RIGHT (at X2= d) has a current going into the page of the page of value, 2 = 6 A. The point "P" is at the location (x=6.00cm, z=10.4cm) The wire ON THE d d Wire 1 Wire 2 a. Find the magnitude of the magnetic field due to wire 2 at the location of wire 1 The Biot-Savart law say the direction of the magnetic field at a field point located in a direction f (from source to field point) where a source wire carries a current in the direction î is îxî b. Find the unit directions for î and Î and perform the cross product to determine the direction of the magnetic field due to wire2 at the location of wire1. c. Using the formula format find the force per unit length in "Ij,k" = 1, I, x B, d. Find the magnitude of the magnetic field due to wire2 at the location of field point e. Find the unit directions for f and Î and…arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON