Two square plates of sides l are placed parallel to each other with separation d as suggested in the figure below. You may assume d is much less than l. The plates carry uniformly distributed static charges +Q_0 and -Q_0. A block of metal has width l, length l, and thickness slightly less than d. It is inserted a distance x into the space between the plates. The charges on the plates remain uniformly distributed as the block slides in. In a static situation, a metal prevents an electric field from penetrating inside it. The metal can be thought of as a perfect dielectric, with K rightarrow infinity. (Use the following as necessary: element _0, Q_0, l, d, and x.) Calculate the stored energy in the system as a function of x Find the direction and magnitude of the force that acts on the metallic block. magnitude F = direction ---Select The area of the advancing front face of the block is essentially equal to ld. Considering the force on the block as acting on this face, find the stress (force per area) on it. stress = Express the energy density in the electric field between the charged plates in terms of Q_0, l, d, and element_0. u =
Trending nowThis is a popular solution!
Step by stepSolved in 6 steps with 5 images
- Red blood cells often become charged and can be treated as point charges. Healthy red blood cells are negatively charged, but unhealthy cells (due to the presence of a bacteria, for example) can become positively charged. In the figure, three red blood cells are oriented such that they are located on the corners of an equilateral triangle. The red blood cell charges are A = 1.90 pC, B = 6.50 pC, and C = -4.80 pC. Given these charges, what would the magnitude and direction of the electric field be at cell A? (1 pC = 1 x 10-12 c.) Magnitude- Direction-arrow_forwardLet's say two unknown charges are given to you. You do not know their individual charges, but you know that their total charge is 8.00µC. You made a test in the laboratory and found that these two charges push each other away with a force of 0.150 N when separated by 0.500 m. What is the charge of the "higher charge" in units of µC ?arrow_forwardFour identical charged particles (q = +10.4 µC) are located on the corners of a rectangle as shown in the figure below. The dimensions of the rectangle are L = 61.2 cm and W = 15.7 cm. (a) Calculate the magnitude of the total electric force exerted on the charge at the lower left corner by the other three charges. N(b) Calculate the direction of the total electric force exerted on the charge at the lower left corner by the other three charges. ° (counterclockwise from the +x-axis)arrow_forward
- Two pith balls, each of mass m = 0.2 × 10−3 kg are suspended from the same point by silk threads each 0.4 m long. An equal charge q is given to each of the pith balls, which causes them to separate by a distance d until the threads are at an angle of 40 degrees to each other. Calculate the magnitude of the charge on each ball.arrow_forwardA light, unstressed spring has length d. Two identical particles, each with charge q, are connected to the opposite ends of the spring. The particles are held stationary a distance d apart and then released at the same moment. The system then oscillates on a frictionless, horizontal table. The spring has a bit of internal kinetic friction, so the oscillation is damped. The particles eventually stop vibrating when the distance between them is 3d. Assume the system of the spring and two charged particles is isolated. Find the increase in internal energy that appears in the spring during the oscillations.arrow_forwardTwo charges lie in a line along the x axis. Charge 1 is q1 = 1.1 C and charge 2 is q2 = 2.15 C. They are each a distance of d = 0.093 m from the origin. What is the distance on the x-axis from the origin at which the electric field will be zero. Give your answer in meters.arrow_forward
- Two point charges each with 0.15 CC of charge are 5.0×10−2 mm apart. Knowing that k is 9×10^9N⋅m^2/C (the proportionality constant for Coulomb's law), find the force between the charges. Express your answer to two significant figures and include the appropriate units.arrow_forwardTwo identical point charges (q= +2.20 x 106 C) are fixed at opposite corners of a square whose sides have a length of 0.450 m. A test charge (qo = -3.10 x 108 C), with a mass of 9.40 x 10-8 kg, is released from rest at one of the corners of the square. Determine the speed of the test charge when it reaches the center of the square. Number i Units VR ·90arrow_forwardOne particle has a mass of 3.71 x 103 kg and a charge of +7.56 μC. A second particle has a mass of 7.17 x 103 kg and the same charge. The two particles are initially held in place and then released. The particles fly apart, and when the separation between them is 0.177 m, the speed of the 3.71 x 103 kg-particle is 126 m/s. Find the initial separation between the particles. V1,B V2,B 92 92 91 Number i 0.011 Units m "B 91arrow_forward
- +3µμC +3μC Charges of 3.0 µC are located at x = 0.0, y = 2.0 m and at x = 0.0, y = -2.0 m. Unknown charges, Q, are located at x = 4.0, y = 2.0 m and at x = 4.0, y = -2.0 m. The electric field at the origin, z = 0.0, y = 0.0 m, is 4.0 x 10³ N/C î (in other words in the r direction). Determine the unknown charge Q.arrow_forwardFour identical charged particles (q +10.4 pC) are located on the corners of a rectangle as shown in the figure below. The dimensions of the rectangle are L 54.6 cm and W 14.7 cm L W (a) Calculate the magnitude of the total electric force exerted on the charge at the lower left corner by the other three charges. N (b) Calculate the direction of the total electric force exerted on the charge at the lower left corner by the other three charges. (counterclockwise from the x-axis)arrow_forwardCalculate the number of electrons in a small, electrically neutral silver pin that has a mass of 10.0 g. Silver has 47 electrons per atom, and its molar mass is 107.87 g/mol. Imagine adding electrons to the pin until the negative charge has the very large value 1.00 mC. How many electrons are added for every 109 electrons already present?arrow_forward