College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Two small spheres spaced 20.0 centimeters apart have equal charge.
How many excess electrons must be present on each sphere if the magnitude of the force of repulsion between them is 4.57×10−214.57×10−21 newtons?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Most workers in nanotechnology are actively monitored for excess static charge buildup. The human body acts like an insulator as one walks across a carpet, collecting -50 nC per step. What charge buildup will a worker in a manufacturing plant accumulate if she walks 25 steps. How many electrons are present in that amount of charge?arrow_forwardA 60-g ball of copper has a net charge of 3 μC. What fraction of the copper's electrons have been removed? (Each neutral copper atom has 29 protons and 29 electrons, and copper has an atomic mass of 63.5 a.m.u.)arrow_forwardTwo small spheres separated by a distance equal to 20.0 cm have equal charges. How many excess electrons must be present in each sphere so that the modulus of the repulsion force between them is equal to 3.33x10-21N?arrow_forward
- A small glass bead charged to 4.5 nC is in the plane that bisects a thin, uniformly charged, 10-cm-long glass rod and is 4.0 cm from the rod's center. The bead is repelled from the rod with a force of 740 μN. What is the total charge of the rod?arrow_forwardIn the figure four particles form a square with edge length a = 2.98 × 10-2 m. The charges are 91 = 94 = 1.84 × 10-15 C and 92 = 93 = 9. (a) What is q if the net electrostatic force on particle 1 is zero? (b) Is there any value of q that makes the net electrostatic force on each of the four particles zero? a) Number b) i a 3 Units a N•m^2/C > 12 4arrow_forwardAn electron is shot directly toward the center of a large metal plate that has surface charge density -2.0* 10-6 C/m2. If the initial kinetic energy of the electron is 1.60 *10-17 J and if the electron is to stop (due to electrostatic repulsion from the plate) just as it reaches the plate, how far from the plate must the launch point be?arrow_forward
- Point charges of 20.2 µC and 44.7 µC are placed 0.48 m apart. At what point along the line between them is the electric field zero? What is the magnitude and direction of electric field halfway between them? There is no direction because the magnitude of the electric field is zero toward the 20.2 µC charge toward the 44.7 µC chargearrow_forwardA thin charged rod has a linear charge density of λ = 8.00 nC/m. How much charge is on a piece of the rod 1.40 cm long? 0.112 nC 11.2 nC 0.175 nC 572 nCarrow_forwardTwo red blood cells each have a mass of 9.05 x 10-¹4 kg and carry a negative charge spread uniformly over their surfaces. The repulsion arising from the excess charge prevents the cells from clumping together. One cell carries -3.00 pC and the other -2.90 pC, and each cell can be modeled as a sphere 3.75 x 10-6 m in radius. If the red blood cells start very far apart and move directly toward each other with the same speed, what initial speed would each need so that they get close enough to just barely touch? Assume that there is no viscous drag from any of the surrounding liquid. initial speed: What is the maximum acceleration of the cells as they move toward each other and just barely touch? maximum acceleration: m/s m/s²arrow_forward
- The adjacent figure shows charged spherical shells A, B and C having charge densities o,-o,o and radii a, b, c, respectively. If VV then b equals to (а) а+с (b) Va +c (c) Vac (d) none of thesearrow_forwardTwo red blood cells each have a mass of 9.05 x 10-14 kg and carry a negative charge spread uniformly over their surfaces. The repulsion arising from the excess charge prevents the cells from clumping together. One cell carries –3.00 pC and the other -3.50 pC, and each cell can be modeled as a sphere 3.75 × 10-0 m in radius. If the red blood cells start very far apart and move directly toward each other with the same speed, what initial speed would each need so that they get close enough to just barely touch? Assume that there is no viscous drag from any of the surrounding liquid. initial speed: m/s What is the maximum acceleration of the cells as they move toward each other and just barely touch? maximum acceleration: m/s?arrow_forwardA uniform line of charge of length L/4 lying betweenx = 0 and x= L4 is charged with Q os shown in the figure. Which of the following gives the electric field at point P located at x = 3L/4? P 3L/4 3kQ 4L dx 3L 3kQ L/4 dx o 4L L/4 4kQ dx 4kQ 31/4 dx O L Jo 4kQ L/4 dx L 'o 3Larrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON