College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Two red blood cells each have a mass of 9.05×10−14 and carry a negative charge spread uniformly over their surfaces. The repulsion arising from the excess charge prevents the cells from clumping together. One cell carries −2.70 pC and the other −2.90 pC, and each cell can be modeled as a sphere 3.75×10−6m in radius. If the red blood cells start very far apart and move directly toward each other with the same speed, what initial speed would each need so that they get close enough to just barely touch? Assume that there is no viscous drag from any of the surrounding liquid.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 1 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two tiny conducting spheres are identical and carry charges of -19.5 μC and +41.5 μC. They are separated by a distance of 3.51 cm. (a) What is the magnitude of the force that each sphere experiences? (b) The spheres are brought into contact and then separated to a distance of 3.51 cm. Determine the magnitude of the force that each sphere now experiences. (a) Number i 5940000000000000 Units N (b) Number i 8810000000000 Units Narrow_forwardAn electron is initially at rest at distance 0.15 m from a fixed charge Q = -5.00×10-9 C. The electron accelerates. How fast is it moving when the distance is 0.3 m?arrow_forwardTwo identical point charges (q= +2.20 x 106 C) are fixed at opposite corners of a square whose sides have a length of 0.450 m. A test charge (qo = -3.10 x 108 C), with a mass of 9.40 x 10-8 kg, is released from rest at one of the corners of the square. Determine the speed of the test charge when it reaches the center of the square. Number i Units VR ·90arrow_forward
- One particle has a mass of 3.71 x 103 kg and a charge of +7.56 μC. A second particle has a mass of 7.17 x 103 kg and the same charge. The two particles are initially held in place and then released. The particles fly apart, and when the separation between them is 0.177 m, the speed of the 3.71 x 103 kg-particle is 126 m/s. Find the initial separation between the particles. V1,B V2,B 92 92 91 Number i 0.011 Units m "B 91arrow_forwardAn infinite line of positive charge lies along the y axis, with charge density A = 1.10 µC/m. A dipole is placed with its center along the x axis at x = 21.0 cm. The dipole consists of two charges ±10.0 µuC separated by 2.00 cm. The axis of the dipole makes an angle of 25.0° with the x axis, and the positive charge is farther from the line of charge than the negative charge. Find the net force exerted on the dipole.arrow_forwardTwo small particles have charges Q₁ = +4.0 μC and Q₂ = -7.0 μC. The particles are conducting and are brought together so that they touch. Charge then moves between the two particles so as to make the excess charge on the two particles equal. If the particles are then separated by a distance of 5.4 mm, what is the magnitude of the electric force between them?arrow_forward
- Four identical charged particles (g = +10.1 µC) are located on the corners of a rectangle as shown in the figure below. The dimensions of the rectangle are L = 64.2 cm and W = 14.6 cm. L (a) Calculate the magnitude of the total electric force exerted on the charge at the lower left corner by the other three charges. (b) Calculate the direction of the total electric force exerted on the charge at the lower left corner by the other three charges. ° (counterclockwise from the +x-axis)arrow_forwardCalculate the number of electrons in a small, electrically neutral silver pin that has a mass of 10.0 g. Silver has 47 electrons per atom, and its molar mass is 107.87 g/mol. Imagine adding electrons to the pin until the negative charge has the very large value 1.00 mC. How many electrons are added for every 109 electrons already present?arrow_forwardTwo identical conducting spheres, fixed in place, attract each other with an electrostatic force of 0.140 N when their center-to-center separation is 63.8 cm. The spheres are then connected by a thin conducting wire. When the wire is removed, the spheres repel each other with an electrostatic force of 0.0403 N. Of the initial charges on the spheres, with a positive net charge, what was (a) the negative charge on one of them and (b) the positive charge on the other? (Assume the negative charge has smaller magnitude.)arrow_forward
- One particle has a mass of 3.71 x 103 kg and a charge of +7.56 µC. A second particle has a mass of 7.17 x 103 kg and the same charge. The two particles are initially held in place and then released. The particles fly apart, and when the separation between them is 0.177 m, the speed of the 3.71 x 103 kg-particle is 126 m/s. Find the initial separation between the particles. V1,B V2,B 92 92 91 Number i Units "B 91arrow_forwardThree identical metallic conducting spheres carry the following charges: q1 = +4.60 μC, q2 = +1.80 μC, and q3 = −1.60 μC. The spheres that carry the charges q1 and q2 are brought into contact. Then they are separated. After that, one of those two spheres is brought into contact with the third sphere that carries the charge q3; those two are then separated as well. How many excess (or deficiency) electrons make up the final charge on the third sphere?arrow_forwardTwo chloride ions and two sodium ions are in water, the “effective charge” on the chloride ions (Cl−) is −2.00 × 10−21 C and that of the sodium ions (Na+) is +2.00 × 10−21 C. (The effective charge is a way to account for the partial shielding due to nearby water molecules.) Assume that all four ions are coplanar. where a = 0.280 nm, b = 0.760 nm, and c = 0.460 nm. What is the direction of electric force on the chloride ion in the lower right-hand corner in the diagram? Enter the angle in degrees where positive indicates above the negative x-axis and negative indicates below the positive x-axis. ° Prevarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON