
College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question

Transcribed Image Text:Two open organ pipes, sounding together, produce
a beat frequency of 9.0 Hz . The shorter one is
2.50 m long.
Part A
How long is the other?
Ηνα ΑΣφ
?
= 1
m
Submit
Request Answer
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A cord with a mass of 0.65kg is stretched between two supports 8.0 m apart. If the tension in the cord is 120 N, how long will it take a pulse to travel from one support to another?arrow_forwardSuppose you want to build a musical instrument with a hollow pipe that is open at both ends. You will make it oscillate by blowing air across one end. If it has length 1.95. What frequency will it resonate at in Hz? Assume the speed of sound in warm moist air is 340 m/s?arrow_forwardWhen two vibrating tunning forks having frequencies 256Hz and 512Hz are held near each other, beats cannot be heared.arrow_forward
- The fundamental frequency produced by the E string on a violin is 659.3 Hz. The length of the string is 33.0 cm. Assuming the speed of sound is 343 m/s, what is the tension on the string if the mass per unit length is 3.47 x 10-4 kg/m?arrow_forwardA guitar string is 104 cm long and has a mass of 3.10 g. From the bridge to the support post (L) is 50 cm, and thestring is under a tension of 540 N. What is the frequency of the first overtone?arrow_forwardA thin 1.0-m metal rod sustains a longitudinal standing wave with vibration antinodes at each end of the rod. There are no other antinodes. The density and Young's modulus of this metal are, respectively, 2900 kg/m3 and 4.5x1010 N/m2. What is the frequency of the rod's vibration?arrow_forward
- A string is fixed at both ends and is vibrating at 136 Hz, which is its third harmonic frequency. The linear density of thestring is 5.50 x 10-3 kg/m, and it is under a tension of 2.9 N. Determine the length of the string.arrow_forwardAn organ pipe is 120 cm long. What is the second audible harmonic if the pipe is open at both ends? The speed ofsound in air is 335 m/s.arrow_forwardWhat would be the length (in cm) of a closed - end organ pipe has a 7th harmonic resonance frequency of 1320 Hz? Assume a speed of sound in air of 344 m/s.arrow_forward
- Two organ pipes, open at one end but closed at the other, are each 1.14 m long. One is now lengthened by 2.00 cm. Find the beat frequency that they produce when playing together in their fundamentals.arrow_forwardA stretched string fixed at each end has a mass of 40.0g and a length of 8.00m. The tension in the string is 49.0N. (a) Determine the positions of the nodes and antinodes for the third harmonic. (b) What is the vibration frequency for this harmonic?arrow_forwardA stretched string fixed at each end has a mass of 40.0 g and a length of 8.00 m. The tension in the string is 49.0 N. (a) Determine the positions of the nodes and antinodes for the third harmonic. (b) What is the vibration frequency for this harmonic?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON