Question
Two nonintercating gaseous particles form an open system. There are three nondegenerate single particle states of energies Є, 2Є, 3Є in the system. Find the canonical partition functions Z0, Zl, Z2 and the grand canonical partition function Z if the particles are (a) fermions (b) bosons What is the average number of particles per state in each case? Calculate the internal energy U? (related to statistical physics)
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 3 images
Knowledge Booster
Similar questions
- Which one of the following statements about the exchange energy of the few lowest excited states of helium, in which the two electrons are in different subshells, is incorrect? Select an answer and submit. For keyboard navigation, use the up/down arrow keys to select an answer. b с d e In the absence of the exchange energy, the degeneracy between 1s¹2s¹ and 1s¹2p¹ configurations would only be lifted by relativistic corrections. For a given configuration and L the exchange energy favours (ie the energy is lower for) S-1 compared with S=0 O For a given configuration and L the exchange energy favours states that are spatially anti-symmetric The exchange energy gives larger shifts in the levels than relativistic corrections L, S remain good quantum numbers in the presence of the exchange energyarrow_forwardHow "density of states" is defined and used in physics? Draw (schematically) the number of occupied energy levels for Fermi Dirac statistics, Maxwell Boltzmann statistics, and Bose Einstein statistics.arrow_forwardplease answer c) only 2. a) A spinless particle, mass m, is confined to a two-dimensional box of length L. The stationary Schrödinger equation is - +a) v(x, y) = Ev(x, y), for 0 < r, y < L. The bound- ary conditions on ý are that it vanishes at the edges of the box. Verify that solutions are given by 2 v(1, y) sin L where n., ny = 1,2..., and find the corresponding energy. Let L and m be such that h'n?/(2mL²) = 1 eV. How many states of the system have energies between 9 eV and 24 eV? b) We now consider a macroscopic box (L of order cm) so that h'n?/(2mL?) ~ 10-20 eV. If we define the wave vector k as ("", ""), show that the density of states g(k), defined such that the number of states with |k| between k and k +dk is given by g(k)dk, is Ak 9(k) = 27 c) Use the expression for g(k) to show that at room temperature the partition function for the translational energy of a particle in a macroscopic 2-dimensional box is Z1 = Aoq, where 2/3 oq = ng = mk„T/2nh?. Hence show that the average…arrow_forward
- explain the Fermi Dirac distributionarrow_forwarda) Show that if the total energy ε of a single particle state can be written as the sum of independent energies EiA, εiB, εic... then its partition function will factorise into a product of partition functions ZAZBZC. b) Given the factorisation, show how the free energy F and quantities such as S and Cy can be expressed as a sum of terms dependent on the sources A, B, C.arrow_forwardSketch the expected occupation number for a state with energy ε as a function of the temperature T when the particles are (i) bosons or (ii) fermions, and explain how these simplify when the system is dilute.arrow_forward
arrow_back_ios
arrow_forward_ios