Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Two mass-spring systems are experiencing damped harmonic motion, both at 0.7 cycles per second and both with an initial maximum displacement of 12 cm. The first has a damping constant of 0.6, and the second has a damping constant of 0.2.
a. Find functions of the form to model the motion in each case.
b. How do they differ? (Hint: graph the two functions)
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 3 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A force of 20 newton stretches a spring 1 meter. A 5 kg mass is attached to the spring, and the system is then immersed in a medium that offers a damping force numerically equal to 10 times the instantaneous velocity. 1) Let x denote the downward displacement of the mass from its equilibrium position. [Note that x>0 when the mass is below the equilibrium position. ] Assume the mass is initially released from rest from a point 3 meters above the equilibrium position. Write the differential equation and the initial conditions for the function x(t) 2) Solve the initial value problem that you wrote above. 3)Find the exact time at which the mass passes through the equilibrium position for the first time heading downward. (Do not approximate.) 4)Find the exact time at which the mass reaches the lowest position. The "lowest position" means the largest value of xarrow_forwardNumber 8 pleasearrow_forwardWhat’s the correct answer for this please ?arrow_forward
- A mass of 10kg oscillates at the end of a spring of stiffness, 5N/m. If the damping in the system is such that it gives a damping ratio of 0.45, determine. i) The critical damping. ii) The value of the damping coefficient. iii) The damped natural frequency. iv) The equation for the displacement if the initial velocity is 0.025m/s, and the initial displacement is 0 m.arrow_forwardFind the free-vibration response of a spring-mass system subject to Coulomb damping for the following initial conditions x(0) = 0.5 m, *(0) = 0. Data: m= 10kg, k = 200 N/m, µ = 0.5. Q1 . ...arrow_forwardGiven an oscillator of mass 2.0kg and spring constant of 180N/m, what is the period without damping? Use numerical methods to model this oscillator with an additional friction force equal to where c is a positive damping constant. Using c=5.0, what is the new period of oscillation. What about for c=10? Assume initial position is 0.2m and initial velocity is zero. Please find the period using the position versus time plot and use the first full cycle of the motion.arrow_forward
- Given the vibrating system below: K4 Y(t) =Ysin30t where for = 30 and Y=20mm Find the following K1 K2 m C3 H C2 C1 C5 C4 1. Frequency Ratio 2. Displacement Transmissibility Ratio 3. Absolute displacement of the mass 4. Type of Damping 5. Equation of motion x(t). Assume Initial conditions for displacement and velocity 6. Graph 2 cycles of the vibrating system. You can use third party app for this. M = 10 kg K1=100 N/m K2= 80 N/m K3=75 N/m K4= 120 N/m C1 = 20Ns/m C2=40 Ns/m C3= 35Ns/m C4= 15 Ns/m C5= 10 Ns/marrow_forwardis my sloution correct ?arrow_forwardis my answer entered correct ?arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY