Glencoe Physics: Principles and Problems, Student Edition
1st Edition
ISBN: 9780078807213
Author: Paul W. Zitzewitz
Publisher: Glencoe/McGraw-Hill
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Two long straight current-carrying wires run parallel to each other. The current in one of the wires is 4.1 A, their separation is 3.3 cm and they repel each other with a force per unit length of 2.9 10-4 N/m.
(a) Determine the current in the other wire.
b) Determine what will happen if the direction of one current is reversed and tripled. (Select all that apply.)
1) The wires are attracted to each other.
2) The wires are repelled by each other.
3) The force per unit length is decreased by a factor of 3.
4)The force per unit length is increased by a factor of 3.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 5.0-m section of a long, straight wire carries a current of 10 A while in a uniform magnetic field of magnitude 8.0103T . Calculate the magnitude of the force on the section if the angle between the field and the direction of the current is (a) 45°; (b) 90°; (C) 0°; or (d) 180°.arrow_forwardDoes increasing the magnitude of a uniform magnetic field through which a charge is traveling necessarily mean increasing the magnetic force on the charge? Does changing the direction of the field necessarily mean a change in the force on the charge?arrow_forwardA long, straight wire lies on a horizontal table and carries a current of 1.20 μA. In a vacuum, a proton moves parallel to the wire (opposite the current) with a constant speed of 2.30 × 104 m/s at a distance d above the wire. Ignoring the magnetic field due to the Earth, determine the value of d.arrow_forward
- A cosmic-ray electron moves at 7.5 × 106 m/sinches perpendicular to Earth’s magnetic field at an altitude queer the field strength is 1.0 × 105T. What is the radius of the circular path the electron follows?arrow_forward, A proton, deuteron, and an alpha-particle ae all accelerated from rest through the same potential difference. They then enter the same magnetic field, moving perpendicular to it. Compute the ratios of the radii of their circular paths. Assume that md= 2wmp and ma= 4mp.arrow_forwardTwo long, parallel wires are hung by cords of length 5.0 cm, as shown in the accompanying figure. Each wire has a mass per unit length of 30 g/m, and they carry the same current in opposite directions. What is the current if the cords hang at 6.0° with respect to the vertical?arrow_forward
- Is the work required to accelerate a rod from rest to a speed v in a magnetic field greater than the final kinetic energy of the rod? Why?arrow_forwardCan a constant magnetic field set into motion an electron initially at rest? Explain your answer.arrow_forwardA proton travels with a speed of 3.00 106 m/s at an angle of 37.0 with the direction of a magnetic field of 0.300 T in the +y direction. What are (a) the magnitude of the magnetic force on the proton and (b) its acceleration?arrow_forward
- When the current through a circular loop is 6.0 A, the magnetic field at its center is 2.0104 T. What is the radius of the loop?arrow_forwardIf a charged particle moves in a straight line, can you conclude that there is no magnetic field present?arrow_forwardTwo long, parallel wires each carry the same current I in the same direction (Fig. OQ22.5). Is the total magnetic field at the point P midway between the wires (a) zero, (b) directed into the page, (c) directed out of the page, (d) directed to the left, or (e) directed to the right? Figure OQ22.5arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning