College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Two light sources emit waves that are in phase with a wavelength of λ = 350 nm. The two waves meet at a distant point where Wave #1 has traveled 100 nm. The distance traveled by Wave #2 is variable. Which of the distances for Wave #2, listed below, would result in destructive interference?
1150 nm
800 nm
450 nm
400 nm
975 nm
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The figure shows four different cases where light of wavelength A reflects from both the top and the bottom of a thin film of thickness d. The indices of refraction of the film and the media above and below it are indicated in the figure(Figure 1). Figure 1.6 1 1.5 1.4 1.4 1.5 1.6 1.5 1.6 1.4 2 3 1 of 1 4 1.4 1.6 1.5 Y Part A For which of the cases will the two reflected rays undergo constructive interference if d=X/4? constructive interference occurs in case 2 and case 3 O constructive interference occurs in case 2 and case 4 constructive interference occurs in case 3 and case 4 constructive interference occurs in case 1 and case 2 Submit Part B Request Answer For which of the cases will the two reflected rays undergo constructive interference if d=λ/2? O constructive interference occurs in case 2 and case 3 O constructive interference occurs in case 2 and case 4 O constructive interference occurs in case 3 and case 4 constructive interference occurs in case 1 and case 2arrow_forwardTwo synchronized microwave sources, A and B, are emitting waves of wavelength 4.0 cm. Source A is located on the x-axis at x = 0, source B can be moved along the x-axis, and a microwave receiver is fixed on the x-axis at x = 91 cm. For each of the following positions of source, B determines whether the waves from the sources will reach the receiver in phase (constructive interference), out of phase (destructive interference), or with a phase difference of π/2 rad. Part (d) x = -4 cm. Part (e) x = -3 cm. Part (f) x = -2 cm.arrow_forwardThe index of refraction of a liquid is 1.32. What is the wavelength in the liquid of a light wave with a vacuum wavelength of 622 nm?arrow_forward
- Two antennas located at points A and B are broadcasting radio waves of frequency 96.0 MHz, perfectly in phase with each other. The two antennas are separated by a distance d= 6.20 m. An observer, P, is located on the x axis, a distance x= 84.0 m from antenna A, so that APB forms a right triangle with PB as hypotenuse. What is the phase difference between the waves arriving at P from antennas A and B? A P X B 4.594x10-¹ rad Computer's answer now shown above. You are correct. Your receipt no. is 158-6031 > Previous Tries Now observer P walks along the x axis toward antenna A. What is P's distance from A when he first observes fully destructive interference between the two waves? 1.203 m As P gets closer A, the path length difference gets larger. What's the smallest path length difference that gives destructive interference? Submit Answer Tries 0/6 Submit Answer Incorrect. Tries 1/6 Previous Tries If observer P continues walking until he reaches antenna A, at how many places along the x…arrow_forwardWaves from a radio station have a wavelength of 250 m. They travel by two paths to a home receiver 20.0 km from the transmitter. One path is a direct path, and the second is by reflection from a mountain directly behind the home receiver. What is the minimum distance from the mountain to the receiver that produces destructive interference at the receiver? (Assume that no phase change occurs on reflection from the mountain.)arrow_forwardWhat is the index of refraction of a material in which the red-light wavelength is 495 nm? Wavelength of red-light in vacuum is 692 nm.arrow_forward
- Two antennas located at points A and B are broadcasting radio waves of frequency 104.0 MHz. The signals start in phase with each other. The two antennas are separated by a distance d = 8.7 m. An observer is located at point P on the x axis, a distance x = 110.0 m from antenna A. The points A, P, and B form a right triangle. Now observer P walks along the x axis toward antenna A. What is P's distance from A when they first observe fully constructive interference between the two waves?arrow_forwardA politician holds a press conference that is televised live. The sound picked up by the microphone of a TV news network is broadcast via electromagnetic waves and heard by a television viewer. This viewer is seated 2.3 m from his television set. A reporter at the press conference is located 4.2 m from the politician, and the sound of the words travels directly from the celebrity's mouth, through the air, and into the reporter's ears. The reporter hears the words exactly at the same instant that the television viewer hears them. Using a value of 343 m/s for the speed of sound, determine the maximum distance between the television set and the politician. Ignore the small distance between the politician and the microphone. In addition, assume that the only delay between what the microphone picks up and the sound being emitted by the television set is that due to the travel time of the electromagnetic waves used by the network.arrow_forwardThanksarrow_forward
- Problem: A 3.46m diameter university communications satellite dish receives TV signals that have a maximum electric field strength (for one channel) of 7.87μV/m Part a: What is the intensity, in watts per squared meter, of this wave? Part b: What is the power, in watts, received by the antenna? part c: If the orbiting satellite broadcasts uniformly over an area of 1.50×1013m2(a large fraction of North America), how much power, in watts, does it radiate?arrow_forwardTwo identical sources A and B emit in-phase plane radio waves with frequency 7.84E4 Hz and intensity 1.78E2 W/m2. A detector placed at location P closer to source B than source A detects a destructive interference. What is the intensity of the wave detected by the detector (in W/m2)?arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON