
Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Two concentric spheres of diameters D1 = 15 cm
and D2 = 25 cm are separated by air at 1 atm pressure. The
surface temperatures of the two spheres enclosing the air are
T1 = 350 K and T2 = 275 K, respectively, and their emissivities
are 0.75. Determine the rate of heat transfer from the
inner sphere to the outer sphere by (a) natural convection and
(b) radiation.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 7 steps with 9 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 2_5190874259647370... A cylindrical shape is with diameter of 1.2m and length of 1.2m. The top surface has an emissivity of 0.7 and temperature 500 K. The bottom surface has an emissivity of o.5 and temperature 650 K. The side surface has an emissivity of 0.4. Determine the shape factors for all surfaces. E 0.0 L=650 K II >arrow_forward2. Consider steady heat transfer between two large parallel plates at constant temperatures of T1 = 295 K and T2 = 155 K that are L = 2 cm apart. Assuming the surfaces to be black, determine the rate of heat transfer between the plates per unit surface area assuming the gap between the plates is (a) filled with atmospheric air,(k = 0.01979 W/m- o C) (b) evacuated,(c) filled with superinsulation having an apparent thermal conductivity of 0.00015 W/m · °C.arrow_forwardThis experiment is conducted to determine the emissivity of a certain material. A long cylindrical rod of diameter D₁ = 0.01 m is coated with this new material and is placed in an evacuated long cylindrical enclosure of diameter D₂ = 0.1 m and emissivity 2 = 0.95, which is cooled externally and maintained at a temperature of 200 K at all times. The rod is heated by passing the electric current through it. When steady operating conditions are reached, it is observed that the rod is dissipating electric power at a rate of 16 W per unit of its length, and its surface temperature is 600 K. Based on these measurements, determine the emissivity of the coating on the rod. The emissivity of the coating on the rod is 0.1165arrow_forward
- 10-cm-diameter hemisphere in Figure Example 8-8 is maintained at a constant temperature soo°C and insulated on its back side. The surface emissivity is 0.4. The opening exchanges adiant energy with a large enclosure at 30°C. Calculate the net radiant exchangearrow_forwardA particular furnace is shaped like a section of a cone. The top surface of the furnace is uniformly heated by a resistance heater. During operation, the top surface is measured to be 800 K and the power supplied to the resistance heater is 1750 W/m². The sidewall of the furnace is perfectly insulated with & = 0.2. If the emissivity of the top and bottom surfaces are ε = 0.5 and ε = 0.7, respectively, determine the temperatures of the sidewall and the bottom surface of the furnace. A₁ A2 A3 →→D₂ = 20 mm D₁ = 40 mm L = 50 mmarrow_forwardA one-dimensional plane wall is exposed to convective and radiative conditions at x = 0. The ambient and surrounding temperatures are T. exposed surface is a = 0.78. Determine the convective and radiative heat fluxes to the wall at x = 0, both in W/m2, if the wall surface = 20°C and Tsur = 40°C, respectively. The convection heat transfer coefficient is h = 20 W/m²-K, and the absorptivity of the temperature is T, = 30°C. Assume the exposed wall surface is gray, and the surroundings are large. gbonv i W/m? Tad i W/m2arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY