College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
thumb_up100%
Two charged particles are located on the x axis. The first is a charge +Q at x = -a. The second is an unknown charge located at x = +3a. The net electric field these charges produce at the origin has a magnitude of 2keQ/a2. Explain how many values are possible for the unknown charge and find the possible values.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 4 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 2 narrow, flat metal plates are positioned vertically, 20.00 cm. The first plate has a positive charge with charge density σ=+630.0 mC/m2 and a second plate has an equal but opposite negative charge with charge density σ=-6300.0 mC/m2 . There are also two narrow, flat metal plates positioned horizontally, 30.00 cm apart, with the top plate given a negative charge, and the bottom plate given an equal but opposite positive charge, such that the electric potential of the bottom plate is 5.00 V higher than the top plate. A small sphere with a mass of m =64.35 g, and a charge of q =22.00 mC is attached to a narrow, stiff, massless, insulating rod with a length of L= 8.00 cm, which is pivoted at point O, which is 2.000 cm from the second plate. The sphere/rod unit is angled at 5 degrees with horizontal and released from rest. Will the sphere/rod ever hit an angle of 0 degrees with the horizontal? If so, how long will it take to reach that point?arrow_forwardFour identical charged particles (q +10.4 pC) are located on the corners of a rectangle as shown in the figure below. The dimensions of the rectangle are L 54.6 cm and W 14.7 cm L W (a) Calculate the magnitude of the total electric force exerted on the charge at the lower left corner by the other three charges. N (b) Calculate the direction of the total electric force exerted on the charge at the lower left corner by the other three charges. (counterclockwise from the x-axis)arrow_forwardA positively charged particle Q1=+25 nC is held fixed at the origin. A second charged Q2 of mass m=8.5 ug is floating a distance d=25 cm above charge Q1. The net force on Q2 is equal to zero. You may assume this system is close to the surface of the Earth. b. Calculate the magnitude of q2 in units of nanocoulumbs.arrow_forward
- A thin, insulating rod of length Icarries a linear charge density^(x) that varies with distance according to (x)=Ax (in SI units). The location of the origin is shown in the figure. A point charge q is located a distance I from the end of the rod as shown. a. What are the SI units of the constant A? b. Find the force that the rod exerts on q.arrow_forwardCharge Q acts as a point charge to create an electric field . Its strength measured from a distance of 30.0 cm away is 40.0 N/C. What is the magnitude of the electric field strength that you would expect to be measured at a distance of 45.0 cm away?arrow_forwardA +2.3 C charge is placed on the x-axis at ×=+2 m, and a -5.7 C charge is placed on they-axis at y = +4 m. What is the magnitude of the net electric field at the origin? What is the direction of the net electric field? Give your answer as a positive angle between 0° and 360°. If a +5 C charge is placed at the origin, what is the magnitude of the net electric force on the charge? What is the direction of the net force? Give your answer as a positive angle between 0° and 360°arrow_forward
- A positive charge of magnitude Q1 = 0.45 nC is located at the origin. A negative charge Q2 = -6.5 nC is located on the positive x-axis at x = 4.5 cm from the origin. The point P is located y = 5.5 cm above charge Q2. Part (a) Calculate the x-component of the electric field at point P due to charge Q1. Write your answer in units of N/C. Part (b) Calculate the y-component of the electric field at point P due to charge Q1. Write your answer in units of N/C. Part (c) Calculate the y-component of the electric field at point P due to the Charge Q2. Write your answer in units of N/C. Part (d) Calculate the y-component of the electric field at point P due to both charges. Write your answer in units of N/C. Part (e) Calculate the magnitude of the electric field at point P due to both charges. Write your answer in units of N/C. Part (f) Calculate the angle in degrees of the electric field at point P relative to the positive x-axis.arrow_forwardConsider three charges q1 = 6.3 µC, q2 = 0.8 µC, and q3 = -2.3 µC, arranged as shown below. (a) What is the electric field at a point 1.0 cm to the left of the middle charge? N/C to the right or left(b) What is the magnitude of the force on a 2.2 µC charge placed at this point? Narrow_forwardPoints A, B, and C are at the vertices of an equilateral triangle. A certain positive charge q placed at A produces an electric field of magnitude 623 N/C at C. Suppose a second, identical charge is placed at B. What is the magnitude of the new electric field at C?arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON