College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Topic Video
Question
Two cars collide at an icy intersection and stick together afterward. The first car has a mass of 1600 kg and was approaching at 7.00 m/s due south. The second car has a mass of 800 kg and was approaching at 19.0 m/s due west.
(a)
Calculate the final velocity (magnitude in m/s and direction in degrees counterclockwise from the west) of the cars. (Note that since both cars have an initial velocity, you cannot use the equations for conservation of momentum along the x-axis and y-axis; instead, you must look for other simplifying aspects.)
magnitude m/sdirection ° counterclockwise from west
(b)
How much kinetic energy (in J) is lost in the collision? (This energy goes into deformation of the cars.)
J
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 4 steps with 4 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two vehicles (a car and a truck) are involved in a collision and stick together. Just before the crash, the car, with a mass of 1200 kg, is travelling North with a velocity of 82 mph while the truck, with a mass of 1900 kg, is travelling West with a velocity of 47 mph (as shown below) (East = 0°, North = 90° , West = 180°, South = 270°)arrow_forwardAn 70 kg basketball player lands from a jump and tries to stop her forward motion or momentum. The normal contact force exerted by the floor on her shoes is 2800 N. The frictional force exerted by the floor on her shoes is 800 N and this force acts posteriorly on the player. There was minimal medial-lateral force during the landing and so this component of the ground reaction force can be ignored. What is the resultant ground reaction force exerted by the floor on the basketball player's shoes? How many times greater than the player's body weight is this resultant ground reaction force calculated in part the first part?arrow_forwardTwo persons A and B who are at rest on an ice skating rink, push each other so that A acquires a velocity of 11.5 m/s towards North. If the mass of person A is 55 kg and that of B is 43 kg. What is the velocity acquired by B and in which direction?Your answer must be in the order Velocity / Direction.arrow_forward
- Two cars collide at an icy intersection and stick together afterward. The first car has a mass of 1650 kg and was approaching at 9.00 m/s due south. The second car has a mass of 750 kg and was approaching at 15.0 m/s due west.(a) Calculate the final velocity of the cars. (Note that since both cars have an initial velocity, you cannot use the equations for conservation of momentum along the x-axis and y-axis; instead, you must look for other simplifying aspects..)Magnitude m/sDirection ° (counterclockwise from west is positive)(b) How much kinetic energy is lost in the collision? (This energy goes into deformation of the cars.) Jarrow_forwardTwo cars collide at an icy intersection and stick together afterward. The first car has a mass of 1750 kg and was approaching at 7.00 m/s due south. The second car has a mass of 900 kg and was approaching at 19.0 m/s due west. (a)Calculate the final velocity (magnitude in m/s and direction in degrees counterclockwise from the west) of the cars. (Note that since both cars have an initial velocity, you cannot use the equations for conservation of momentum along the x-axis and y-axis; instead, you must look for other simplifying aspects.) magnitude _______________ m/s direction ° _________________ counterclockwise from west (b)How much kinetic energy (in J) is lost in the collision? (This energy goes into deformation of the cars.) ________________________ Jarrow_forwardTwo cars collide at an icy intersection and stick together afterward. The first car has a mass of 1200 kg and is approaching at 8.5 m/s due south. The second car has a mass of 550 kg and is approaching at 15 m/s due west. (a) Calculate the magnitude of the final velocity, in meters per second, of the cars. (b) Calculate the direction of the final velocity, in degrees south of west, of the cars. (c) What is the change in kinetic energy, in joules, for the collision? (This energy goes into the deformation of the cars.)arrow_forward
- Two cars collide at an icy intersection and stick together afterward. The first car has a mass of 1050 kg and was approaching at 4.00 m/s due south. The second car has a mass of 900 kg and was approaching at 22.0 m/s due west. (a) Calculate the final velocity (magnitude in m/s and direction in degrees counterclockwise from the west) of the cars. (Note that since both cars have an initial velocity, you cannot use the equations for conservation of momentum along the x-axis and y-axis; instead, you must look for other simplifying aspects.) magnitude m/s direction ° counterclockwise from west (b) How much kinetic energy (in J) is lost in the collision? (This energy goes into deformation of the cars.)arrow_forward(a) A car traveling due east strikes a car traveling due north at an intersection, and the two move together as a unit. A property owner on the southeast corner of the intersection claims that his fence was torn down in the collision. Should he be awarded damages by the insurance company? Defend your answer. (b) Let the eastward-moving car have a mass of 1 300 kg and a speed of 30.0 km/h and the northward-moving car a mass of 1 100 kg and a speed of 20.0 km/h. Find the velocity after the collision. Are the results consistent with your answer to part (a)?arrow_forwardAn 70 kg basketball player lands from a jump and tries to stop her forward motion or momentum. The normal contact force exerted by the floor on her shoes is 2800 N. The frictional force exerted by the floor on her shoes is 800 N and this force acts posteriorly on the player. There was minimal medial-lateral force during the landing and so this component of the ground reaction force can be ignored. What is the resultant ground reaction force exerted by the floor on the basketball player's shoes? How many times greater than the player's body weight is this resultant ground reaction force calculated in part a)?arrow_forward
- 4) Train cars are coupled together by being bumped into one another. Suppose two loaded train cars are moving toward one another, the first having a mass of 150,000 kg and a velocity of 0.300 m/s, and the second having a mass of 125,000 kg and a velocity of −0.120 m/s. (The minus indicates direction of motion.) What is their final velocity (in m/s)? _____ m/sarrow_forwardTwo cars collide at an icy intersection and stick together afterward. The first car has a mass of 1800 kg and was approaching at 5.00 m/s due south. The second car has a mass of 700 kg and was approaching at 21.0 m/s due west.(a) Calculate the final velocity of the cars. (Note that since both cars have an initial velocity, you cannot use the equations for conservation of momentum along the x-axis and y-axis; instead, you must look for other simplifying aspects..)Magnitude m/sDirection ° (counterclockwise from west is positive)(b) How much kinetic energy is lost in the collision? (This energy goes into deformation of the cars.) Jarrow_forwardTwo cars collide at an icy intersection and stick together afterward. The first car has a mass of 1800 kg and was approaching at 7.00 m/s due south. The second car has a mass of 700 kg and was approaching at 22.0 m/s due west. (a) Calculate the final velocity of the cars. (Note that since both cars have an initial velocity, you cannot use the equations for conservation of momentum along the x-axis and y-axis; instead, you must look for other simplifying aspects..) Magnitude = m/sDirection = ° (counterclockwise from west is positive) (b) How much kinetic energy is lost in the collision? (This energy goes into deformation of the cars.) =Jarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON