Two blocks collide on a frictionless surface. After the collision, the blocks stick together. Block A has a mass M and is initially moving to the right at speed v Block B has a mass 2 M and is initially at rest. System C is composed of both blocks. (a) Draw a force diagram for each block at an instant during the collision. (b) Rank the magnitudes of the horizontal forces in your diagram. Explain your reasoning. (c) Calculate the change in momentum of block A, block B, and system C. (d) Is kinetic energy conserved in this collision? Explain your answer. (This problem is courtesy of Edward F. Redish. For more such problems, visit http://www.physics.umd.edu/perg.)
Rigid Body
A rigid body is an object which does not change its shape or undergo any significant deformation due to an external force or movement. Mathematically speaking, the distance between any two points inside the body doesn't change in any situation.
Rigid Body Dynamics
Rigid bodies are defined as inelastic shapes with negligible deformation, giving them an unchanging center of mass. It is also generally assumed that the mass of a rigid body is uniformly distributed. This property of rigid bodies comes in handy when we deal with concepts like momentum, angular momentum, force and torque. The study of these properties – viz., force, torque, momentum, and angular momentum – of a rigid body, is collectively known as rigid body dynamics (RBD).
Two blocks collide on a frictionless surface. After the collision, the blocks stick together. Block A has a mass M and is initially moving to the right at speed v Block B has a mass 2 M and is initially at rest. System C is composed of both blocks. (a) Draw a force diagram for each block at an instant during the collision. (b) Rank the magnitudes of the horizontal forces in your diagram. Explain your reasoning. (c) Calculate the change in momentum of block A, block B, and system C. (d) Is kinetic energy conserved in this collision? Explain your answer. (This problem is courtesy of Edward F. Redish. For more such problems, visit http://www.physics.umd.edu/perg.)
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 4 images