College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Two blocks are positioned on surfaces, each inclined at the same angle of 55.4 degrees with respect to the horizontal. The blocks are connected by a rope which rests on a frictionless pulley at the top of the inclines as shown, so the blocks can slide together. The mass of the black block is 4.36 kg, and the coefficient of kinetic friction for both blocks and inclines is 0.290. Assume static friction has been overcome and that everything can slide. What is must be the mass of the white block if both blocks are to slide to the LEFT at a constant velocity?
2.91 kg
|
||
6.54 kg
|
||
4.36 kg
|
||
5.45 kg
|
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two blocks are positioned on surfaces, each inclined at the same angle of 55.4 degrees with respect to the horizontal. The blocks are connected by a rope which rests on a frictionless pulley at the top of the inclines as shown, so the blocks can slide together. The mass of the black block is 7.71 kg, and the coefficient of kinetic friction for both blocks and inclines is 0.600. Assume static friction has been overcome and that everything can slide. What is must be the mass of the white block if both blocks are to slide to the LEFT at a constant velocity? 18.60 kg 7.71 kg 13.16 kg 3.20 kgarrow_forwardPlease help with this question, it comes with a few subparts. PLEASE HELP.arrow_forwardIn the back of the truck is a 200kg box that has a coefficient of static friction of 0.8 and a coefficient of kinetic friction of 0.4 between the truck and the box. You are driving on the freeway at 25m/s. There is a car ahead of you that is driving at 30m/s. Your front bumper is 30m behind the back of the first car. You would like to pass the other car and pull back into the same lane when your back bumper is 10m ahead of the front bumper of the first car in 5 seconds. The length of the car ahead of you is 3m and the length of your car is 4m.a) What minimum acceleration do you need to do this?b) What distance does your car travel in that time?c) Does the box in your truck start to slide off the truck?arrow_forward
- A book of mass 9 kg rests on a plank. You tilt one end of the plank and slowly increase the angle of the tilt. The coefficient of static friction between the book and the plank is 0.48. What is the maximum angle of tilt for which the book will remain stationary and not slide down the plank?arrow_forwardThe block shown in the figure is sliding along a frictionless horizontal surface The block's mass is m = 4.80 kg,the magnitude of the applied force is F = 26.5 N, and the angle of the applied force F from the horizontal is θ = 28.0°. Determine the magnitude n of the normal force acting on the block.arrow_forwardTwo blocks are positioned on surfaces, each inclined at the same angle of 44.0 degrees with respect to the horizontal. The blocks are connected by a rope which rests on a frictionless pulley at the top of the inclines as shown, so the blocks can slide together. The mass of the black block is 6.84 kg, and the coefficient of kinetic friction for both blocks and inclines is 0.250. Assume static friction has been overcome and that everything can slide. What is must be the mass of the white block if both blocks are to slide to the LEFT at an acceleration of 1.5 m/s^2?arrow_forward
- A constant force Fa pushes a 22.5-kg box across a rough horizontal surface. The magnitude of Fa is 185 N and the force is inclined at an angle of θ = 30.0° below the horizontal. The coefficient of kinetic friction between the box and the surface is μk = 0.500. What is the magnitude of the box's acceleration?arrow_forwardA heavy sled is being pulled by two people, as shown in the figure. The coefficient of static friction between the sled and the ground is H = 0.603, and the kinetic friction coefficient is µ = 0.403. The combined mass of the sled and its load is m = 336 kg. The ropes are separated by an angle o = 25.0°, and they make an angle 0 = 31.1° with the horizontal. Assuming both ropes pull equally hard, what is the minimum rope tension required to get the sled moving? minimum rope tension: If this rope tension is maintained after the sled starts moving, what is the sled's acceleration? m/s2 acceleration:arrow_forwardA stone has a mass of 8.79 g and is wedged into the tread of an automobile tire, as the drawing shows. The coefficient of static friction between the stone and each side of the tread channel is 0.818. When the tire surface is rotating at 10.9m/s, the stone flies out the tread. The magnitude FN of the normal force that each side of the tread channel exerts on the stone is 2.46 N. Assume that only static friction supplies the centripetal force, and determines the radius r of the tire (in terms of m)arrow_forward
- A 40 N box is resting on a table when a 20 N force is applied to it horizontally. The coefficients of static and kinetic friction are 0.3 and 0.1, respectively. Which of the following best describes the resulting motion of the box? The motion of the box cannot be determined with the given information. The box accelerates in the direction of the applied force. The box remains at rest. The box moves with a constant velocity in the direction of the applied force.arrow_forwardTwo blocks are positioned on surfaces, each inclined at the same angle of 54.5 degrees with respect to the horizontal. The blocks are connected by a rope which rests on a frictionless pulley at the top of the inclines as shown, so the blocks can slide together. The mass of the black block is 7.57 kg, and the coefficient of kinetic friction for both blocks and inclines is 0.360. Assume static friction has been overcome and that everything can slide. What is must be the mass of the white block if both blocks are to slide to the LEFT at a constant velocity?arrow_forwardA stationary 10kg object is sitting on the ground. The coefficient of static friction between the object and the ground is 0.8 and the coefficient of kinetic friction is 0.6. How much horizontal force needs to be applied in order to make the object move?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON