Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Toluene at 35 degrees Celsius is pumped from an open reservoir to a tank kept at a gauge pressure of 150 kPa. The pump itself is 3m below the reservoir, while the discharge tank is 10m above the reservoir. Assuming friction in the suction line is negligible, while in the discharge line the friction head amounts to 7.5 m, determine the net positive suction head available for the pump. If the pump has an efficiency of 65%, determine the total power input. At the given temperature, the density and vapor pressure of toluene are 862 kg/m3 and 40 mmHg
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A pump takes water at 60°F from a large reservoir and delivers it to the bottom of an open elevated tank 25 ft above the reservoir surface through a 3 inch ID pipe. The inlet to the pump is located 10 ft below the water surface, and the water level in the tank is constant at 160 ft above the reservoir surface. The pump delivers 150 gal/min. If the total loss of energy due to friction in the piping system is 35 ft·lbf/lb. The pump and its motor have an overall efficiency of 55 %. i. Determine Delta Z (Z2 - Z1) in ft. ii. What is the actual shaft work needed for this particular mass flow rate in (ft-lbf)/s. iii. What is the mass flow rate of the water in lbm/s?arrow_forwardA pump draws water from a reservoir and conveys it to another reservoir 30 m above. The suction pipe is 100 mm in diameter and 10 m long while the delivery pipe is 100 mm in diamter and 150 m long. if the the velocity in the pipe is 3 m/s, the friction factor of the pipe 0.008, and the pump and motor efficiencies are 85 % and 92 %, respectively. Assume height of pump/motor negliglible. Q1. Calculate the gauge pressure at the pump's inlet (at C) (kN/m2) Q2. Calculate the gauge pressure at the pump's outlet (at D) (kN/m2) Q3. Calculate input power to motor (kW)arrow_forwardA large, open-topped water tank is being filled from above by a 1.0-cm-diameter hose. The water in the hose has a uniform speed of 11 cm/s. Meanwhile, the tank springs a leak at the bottom. The hole has a diameter of 0.70 cm. Determine the equilibrium level heq of the water in the tank, O measured relative to the bottom, if water continues flowing into the tank at the same rate. heq 1.26 X10-3 Incorrect marrow_forward
- Water flows through an orifice at the vertical side of a closed cylindrical tank. The water level inside the tank remains constant at 3m and the pressure at the top of the tank is 30KPa. If the jet strikes the ground horizontally by 4.5m and below the vena contracta by 1m, determine the coefficient of velocity.arrow_forward60 degree F water flows through a horizontal turbine. The water speeds at the turbine inlet and the turbine outlet are identical. The water gage pressure at the turbine inlet is 46.4 psi while that at the outlet is 12.2 psi. Assume water frictional losses through the turbine are negligible. Deterimine the shaft work rate in ft*lb per slug of water passing through the turbine. Answer with a positive number if mechanical energy goes into the water and a negative number if mechanical energy comes out of the water as it passes through the turbine.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY