To pass inspection, steel balls designed for use in ball bearings must clear the fixed bar A at the top of their rebound when dropped from rest through the vertical distance H = 36 in. onto the heavy inclined steel plate. If balls which have a coefficient of restitution of less than 0.7 with the rebound plate are to be rejected, determine the position of the bar by specifying h and s. Neglect any friction during impact.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
100%
To pass inspection, steel balls designed for use in ball bearings must clear the fixed bar A at the top of their rebound when dropped from rest through the vertical distance H = 36 in. onto the heavy inclined steel plate. If balls which have a coefficient of restitution of less than 0.7 with the rebound plate are to be rejected, determine the position of the bar by specifying h and s. Neglect any friction during impact.
3/202 To pass inspection, steel balls designed for use in ball bearings must clear the fixed bar A at the top of their rebound when dropped from rest through the vertical distance H = 36
in. onto the heavy inclined steel plate. If balls which have a coefficient of restitution of less than 0.7 with the rebound plate are to be rejected, determine the position of the bar by specifying
h and s. Neglect any friction during impact.
Answer
h = 1.263 ft, s = 1.132 ft
1
H
A
0 10°
PROBLEM 3/202
h
Transcribed Image Text:3/202 To pass inspection, steel balls designed for use in ball bearings must clear the fixed bar A at the top of their rebound when dropped from rest through the vertical distance H = 36 in. onto the heavy inclined steel plate. If balls which have a coefficient of restitution of less than 0.7 with the rebound plate are to be rejected, determine the position of the bar by specifying h and s. Neglect any friction during impact. Answer h = 1.263 ft, s = 1.132 ft 1 H A 0 10° PROBLEM 3/202 h
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 4 images

Blurred answer
Knowledge Booster
Compressible Flow
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY