this problem, you are going to explore three different ways to determine the gravitational constant G. a) By observing that the centripetal acceleration of the Moon around the Earth is ac = 2.66 × 10-3 m/s2, what is the gravitatonal constant G, in cubic meters per kilogram per square second? Assume the Earth has a mass of ME = 5.96 × 1024 kg, and the mean distance between the centers of the Earth and Moon is rm
Gravitational force
In nature, every object is attracted by every other object. This phenomenon is called gravity. The force associated with gravity is called gravitational force. The gravitational force is the weakest force that exists in nature. The gravitational force is always attractive.
Acceleration Due to Gravity
In fundamental physics, gravity or gravitational force is the universal attractive force acting between all the matters that exist or exhibit. It is the weakest known force. Therefore no internal changes in an object occurs due to this force. On the other hand, it has control over the trajectories of bodies in the solar system and in the universe due to its vast scope and universal action. The free fall of objects on Earth and the motions of celestial bodies, according to Newton, are both determined by the same force. It was Newton who put forward that the moon is held by a strong attractive force exerted by the Earth which makes it revolve in a straight line. He was sure that this force is similar to the downward force which Earth exerts on all the objects on it.
In this problem, you are going to explore three different ways to determine the gravitational constant G.
a) By observing that the centripetal acceleration of the Moon around the Earth is ac = 2.66 × 10-3 m/s2, what is the gravitatonal constant G, in cubic meters per kilogram per square second? Assume the Earth has a mass of ME = 5.96 × 1024 kg, and the mean distance between the centers of the Earth and Moon is rm = 3.81 × 108 m.
b) Measuring the centripetal acceleration of an orbiting object is rather difficult, so an alternative approach is to use the period of the orbiting object. Find an expression for the gravitational constant in terms of the distance between the gravitating objects rm, the mass of the larger body (the earth) ME, and the period of the orbiting body T.
c) The gravitational constant may also be calculated by analyzing the motion of an object, launched from the surface of the earth at an initial velocity of vi. Find an expression of the gravitational constant from the initial velocity, mass of the earth ME, and the initial and final heights. Use the parameter φ = 1/rinitial - 1/rfinal to simplify your final answer.
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images