Advanced Engineering Mathematics
Advanced Engineering Mathematics
10th Edition
ISBN: 9780470458365
Author: Erwin Kreyszig
Publisher: Wiley, John & Sons, Incorporated
Bartleby Related Questions Icon

Related questions

Question

Prove Theorem 6.1.3 implies Theorem 6.1.2

**Theorem 6.1.2 (Differentiation of the Integral)**: If \( f \) is continuous on \([a, b]\), then \( F(x) = \int_{a}^{x} f(t) \, dt \) is \( C^1 \) and \( F' = f \).

**Theorem 6.1.3 (Integration of the Derivative)**: If \( f \) is \( C^1 \) on \([a, b]\), then \(\int_{a}^{b} f'(x) \, dx = f(b) - f(a)\).
expand button
Transcribed Image Text:**Theorem 6.1.2 (Differentiation of the Integral)**: If \( f \) is continuous on \([a, b]\), then \( F(x) = \int_{a}^{x} f(t) \, dt \) is \( C^1 \) and \( F' = f \). **Theorem 6.1.3 (Integration of the Derivative)**: If \( f \) is \( C^1 \) on \([a, b]\), then \(\int_{a}^{b} f'(x) \, dx = f(b) - f(a)\).
Expert Solution
Check Mark
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Advanced Engineering Mathematics
Advanced Math
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Wiley, John & Sons, Incorporated
Text book image
Numerical Methods for Engineers
Advanced Math
ISBN:9780073397924
Author:Steven C. Chapra Dr., Raymond P. Canale
Publisher:McGraw-Hill Education
Text book image
Introductory Mathematics for Engineering Applicat...
Advanced Math
ISBN:9781118141809
Author:Nathan Klingbeil
Publisher:WILEY
Text book image
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Text book image
Basic Technical Mathematics
Advanced Math
ISBN:9780134437705
Author:Washington
Publisher:PEARSON
Text book image
Topology
Advanced Math
ISBN:9780134689517
Author:Munkres, James R.
Publisher:Pearson,