The top edge of a rod of mass 2.80 kg is pivoted to a point on the ceiling. The rod is free to rotate about this pivot and the length of the rod is 40.0 cm. The rod is pulled to the right until it makes 27.0 degree with the vertical and then released from rest. At the same time a clay ball of mass 350 grams is moving to the right with a speed 160 cm/s. As soon as the rod reaches the vertical position (moving to the left), the clay ball hits the rod at the bottom and sticks to it. o search a. Determine the final angular velocity of the clay+rod system. 116 min 42 secs Find out the magnitude angular displacement of the clay+rod system after the impact BIUGG Next TH 24°C Partly cloudy
Angular Momentum
The momentum of an object is given by multiplying its mass and velocity. Momentum is a property of any object that moves with mass. The only difference between angular momentum and linear momentum is that angular momentum deals with moving or spinning objects. A moving particle's linear momentum can be thought of as a measure of its linear motion. The force is proportional to the rate of change of linear momentum. Angular momentum is always directly proportional to mass. In rotational motion, the concept of angular momentum is often used. Since it is a conserved quantity—the total angular momentum of a closed system remains constant—it is a significant quantity in physics. To understand the concept of angular momentum first we need to understand a rigid body and its movement, a position vector that is used to specify the position of particles in space. A rigid body possesses motion it may be linear or rotational. Rotational motion plays important role in angular momentum.
Moment of a Force
The idea of moments is an important concept in physics. It arises from the fact that distance often plays an important part in the interaction of, or in determining the impact of forces on bodies. Moments are often described by their order [first, second, or higher order] based on the power to which the distance has to be raised to understand the phenomenon. Of particular note are the second-order moment of mass (Moment of Inertia) and moments of force.
Step by step
Solved in 4 steps with 3 images