Database System Concepts
7th Edition
ISBN: 9780078022159
Author: Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
The third-clique problem is about deciding whether a given graph G = (V, E) has a clique of cardinality at least |V |/3.
Show that this problem is NP-complete.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.Similar questions
- The graph five-coloring problem is stated as follows: Determine if the vertices of G can be colored using 5 colors such that no two adjacent vertices share the same color. Prove that the five-coloring problem is NP-complete. Hint: You can assume that graph 3-coloring is NP-completearrow_forwardLet G be a graph with n vertices. If the maximum size of an independent set in G is k, clearly explain why the minimum size of a vertex cover in G is n - k.arrow_forwardThe Triangle Vertex Deletion problem is defined as follows: Given: an undirected graph G = (V, E) , with IVI=n, and an integer k>= 0. Is there a set of at most k vertices in G whose deletion results in deleting all triangles in G? (a) Give a simple recursive backtracking algorithm that runs in O(3^k * ( p(n))) where p(n) is a low-degree polynomial corresponding to the time needed to determine whether a certain vertex belongs to a triangle in G. (b) Selecting a vertex that belong to two different triangles can result in a better algorithm. Using this idea, provide an improved algorithm whose running time is O((2.562^n) * p(n)) where 2.652 is the positive root of the equation x^2=x+4arrow_forward
- Let G be a graph with n vertices. The k-coloring problem is to decide whether the vertices of G can be labeled from the set {1, 2, ..., k} such that for every edge (v,w) in the graph, the labels of v and w are different. Is the (n-4)-coloring problem in P or in NP? Give a formal proof for your answer. A 'Yes' or 'No' answer is not sufficient to get a non-zero mark on this question.arrow_forwardIn the decision version of the Clique problem you are given a non-empty graph G = (V,E) and a positive integer k and asked whether G has a complete subgraph (or clique) of size k (i.e., k vertices that induce a complete subgraph). Give the pseudocode of a recursive backtracking algorithm for the problem, and analyze your algorithm by providing a worst-case recurrence. Can you guarantee a worst-case running time in O(1.466^n)? Prove your answerarrow_forwardPlease show written work with answer!! An independent set in a graph is a set of vertices no two of which are adjacent to each other. A clique is a complete subgraph of a given graph. This means that there is an edge between any two nodes in the subgraph. The maximal clique is the complete subgraph of a given graph which contains the maximum number of nodes. We know that independent set is a NP complete problem. Transform the independent set to max clique (in polynomial time) to show that Max Clique is also NParrow_forward
- please answer both of the questions. 7. The Bellman-Ford algorithm for single-source shortest paths on a graph G(V,E) as discussed in class has a running time of O|V |3, where |V | is the number of vertices in the given graph. However, when the graph is sparse (i.e., |E| << |V |2), then this running time can be improved to O(|V ||E|). Describe how how this can be done.. 8. Let G(V,E) be an undirected graph such that each vertex has an even degree. Design an O(|V |+ |E|) time algorithm to direct the edges of G such that, for each vertex, the outdegree is equal to the indegree. Please give proper explanation and typed answer only.arrow_forwardShow that the decision problem version is an NP-complete problem; Exists, given a graph G and a goal cost c, a spanning tree in which the most any vertex pays is not more than c?arrow_forwardProve the choice problem variant is NP-complete; Exists a spanning tree with a goal cost c for a graph G and a vertex's maximum payment?arrow_forward
- 5. (This question goes slightly beyond what was covered in the lectures, but you can solve it by combining algorithms that we have described.) A directed graph is said to be strongly connected if every vertex is reachable from every other vertex; i.e., for every pair of vertices u, v, there is a directed path from u to v and a directed path from v to u. A strong component of a graph is then a maximal subgraph that is strongly connected. That is all vertices in a strong component can reach each other, and any other vertex in the directed graph either cannot reach the strong component or cannot be reached from the component. (Note that we are considering directed graphs, so for a pair of vertices u and v there could be a path from u to v, but no path path from v back to u; in that case, u and v are not in the same strong component, even though they are connected by a path in one direction.) Given a vertex v in a directed graph D, design an algorithm for com- puting the strong connected…arrow_forwardConsider a graph G that is comprised only of non-negative weight edges such that (u, v) € E, w(u, w) > 0. Is it possible for Bellman-Ford and Dijkstra's algorithm to produce different shortest path trees despite always producing the same shortest-path weights? Justify your answer.arrow_forwardCan you help me solve this exercise? Please note that the greedy approach described in the advice paragraph does not work.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Database System ConceptsComputer ScienceISBN:9780078022159Author:Abraham Silberschatz Professor, Henry F. Korth, S. SudarshanPublisher:McGraw-Hill EducationStarting Out with Python (4th Edition)Computer ScienceISBN:9780134444321Author:Tony GaddisPublisher:PEARSONDigital Fundamentals (11th Edition)Computer ScienceISBN:9780132737968Author:Thomas L. FloydPublisher:PEARSON
- C How to Program (8th Edition)Computer ScienceISBN:9780133976892Author:Paul J. Deitel, Harvey DeitelPublisher:PEARSONDatabase Systems: Design, Implementation, & Manag...Computer ScienceISBN:9781337627900Author:Carlos Coronel, Steven MorrisPublisher:Cengage LearningProgrammable Logic ControllersComputer ScienceISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
Database System Concepts
Computer Science
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:McGraw-Hill Education
Starting Out with Python (4th Edition)
Computer Science
ISBN:9780134444321
Author:Tony Gaddis
Publisher:PEARSON
Digital Fundamentals (11th Edition)
Computer Science
ISBN:9780132737968
Author:Thomas L. Floyd
Publisher:PEARSON
C How to Program (8th Edition)
Computer Science
ISBN:9780133976892
Author:Paul J. Deitel, Harvey Deitel
Publisher:PEARSON
Database Systems: Design, Implementation, & Manag...
Computer Science
ISBN:9781337627900
Author:Carlos Coronel, Steven Morris
Publisher:Cengage Learning
Programmable Logic Controllers
Computer Science
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education