The sensible effectiveness of a heat recovery ventilator is 53.6%. The inlet temperature of fresh air is 35°C and relative humidity is 50%. The inlet emperature of exhaust air is 24°C and relative humidity is 60%. The mass flow rates of fresh air and exhaust air are 1.3 kg/s and 1.5 kg/s, espectively. Calculate the outlet fresh air emperature and estimate the energy saving ratio of adopting heat recovery ventilator.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
The sensible effectiveness of a heat recovery
ventilator is 53.6%. The inlet temperature of fresh
air is 35°C and relative humidity is 50%. The inlet
temperature of exhaust air is 24°C and relative
humidity is 60%. The mass flow rates of fresh air
and exhaust air are 1.3 kg/s and 1.5 kg/s,
respectively. Calculate the outlet fresh air
temperature and estimate the energy saving ratio
of adopting heat recovery ventilator.
Transcribed Image Text:The sensible effectiveness of a heat recovery ventilator is 53.6%. The inlet temperature of fresh air is 35°C and relative humidity is 50%. The inlet temperature of exhaust air is 24°C and relative humidity is 60%. The mass flow rates of fresh air and exhaust air are 1.3 kg/s and 1.5 kg/s, respectively. Calculate the outlet fresh air temperature and estimate the energy saving ratio of adopting heat recovery ventilator.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Refrigeration and Air Conditioning
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY