
Structural Analysis
6th Edition
ISBN: 9781337630931
Author: KASSIMALI, Aslam.
Publisher: Cengage,
expand_more
expand_more
format_list_bulleted
Question

Transcribed Image Text:The sanding-drum mandrel shown in the figure is made for use with a hand drill. The mandrel is made from a rubber-like material that
expands when the nut is tightened to secure the sanding sleeve placed over the outside surface. If the diameter D of the mandrel
increases from 1.50 in. to 1.60 in. as the nut is tightened, determine
(a) the average normal strain along a diameter of the mandrel.
(b) the circumferential strain at the outside surface of the mandrel.
Sanding sleeve
Mandrel
Answers:
(a) ED =
in./in.
(b) Ес
in./in.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- An aluminum alloy rod has a circular cross section with a diameter of 7mm. The rod is subjected to a tensile load of 5kN. Assume that the material is in the elastic region and E = 69 GPa. If Poisson's Ratio is 0.38, what will be the lateral strain? E=6/8 v= -€(lateral)/e(axial) V ominorbooomesarrow_forwardA 5-mm-thick rectangular alloy bar is subjected to ajtensile load P by pins at A and B, as shown in the figure. The width of the bar is w = 33 mm. Strain gages bonded to the specimen measure the following strains in the longitudinal (x) and transverse (y) directions: €, =710 με and ε,--255 με (a) Determine Poisson's ratio for this specimen. (b) If the measured strains were produced by an axial load of P = 24 kN, what is the modulus of elasticity for this specimen? Answers: (a) v= (b) E= GPaarrow_forwardAs shown, an aluminium alloy construction BCD with a circular cross section is fixed at end B and affected by a force of 150 N at the free end D. The diameter of the cross-section a-a is 20 mm. The yield strength of the material is 80 MPa: a) Determine the stresses at point A of the a-a cross-section. As indicated in the picture, draw the stress element in Cartesian coordinates and specify the stress values.(b) Calculate the factor of safety, n for Tresca, and the von Mises yield criterion to see if the structure would yield based on the stresses at point A.(c) In the major stress area, draw the yield loci of both criteria and indicate the operational stress state & why is the Rankine failure criterion inappropriate for aluminium alloys?arrow_forward
- SITUATION. As shown in the figure below, a rigid bar with negligible mass is pinned at O and attached to two vertical rods. Assume that the rods were initially stress-free. Allowable stress in steel is 120 MPa and in bronze is 60 MPa. For this problem, a = 1.8m; b = 1.3m; c= 1.7m. a b C P Steel: A-900 mm² Bronze: A=1200 mm² E = 83 GPa L=2.0 m E = 200 GPa L=1.5m What is the value of P without exceeding the allowable stress of bronze, in kN? O 161 O 174 O 145 124 4arrow_forwardA steel specimen is tested in tension. The specimen is 25 mm wide by 12.5 mm thick in the test region. By monitoring the load dial of the testing machine, it was found that the specimen yielded at a load of 160 kN and fractured at 214 kN. a. Determine the tensile stress at yield and at fracture. b. If the original gauge length was 100 mm, estimate the gauge length when the specimen is stressed to 1/2 the yield stress.arrow_forwardSolve it correctly please.arrow_forward
- A cylindrical specimen of some metal alloy having an elastic modulus of 101 GPa and an original cross-sectional diameter of 3.6 mm will experience only elastic deformation when a tensile load of 2430 N is applied. Calculate the maximum length of the specimen before deformation if the maximum allowable elongation is 0.41 mm. i mmarrow_forward3-3. Data taken from a stress-strain test for a ceramic are given in the table. The curve is linear between the origin and the first point. Plot the diagram, and determine approximately the modulus of toughness. The rupture stress is or = 53.4 ksi.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Structural Analysis (10th Edition)Civil EngineeringISBN:9780134610672Author:Russell C. HibbelerPublisher:PEARSONPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
- Fundamentals of Structural AnalysisCivil EngineeringISBN:9780073398006Author:Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel LanningPublisher:McGraw-Hill EducationTraffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage Learning


Structural Analysis (10th Edition)
Civil Engineering
ISBN:9780134610672
Author:Russell C. Hibbeler
Publisher:PEARSON

Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning

Fundamentals of Structural Analysis
Civil Engineering
ISBN:9780073398006
Author:Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:McGraw-Hill Education


Traffic and Highway Engineering
Civil Engineering
ISBN:9781305156241
Author:Garber, Nicholas J.
Publisher:Cengage Learning