The reproduction number R of an epidemic spreading process taking place on a random network with degree distribution P(k) is given by (k(k − 1)) R=A (k) where k indicates the degree of the nodes and the average (...) indicates the average over the degree distribution, P(k). Therefore R is the product between the infectivity A of the virus, due to its biological fitness and the branching ratio of the network, depending on the degree distribution of the network and given by (k(k-1))/(k). According to the value of R the epidemic can be in different regimes: If R>1 the epidemics is in the supercritical regime: the epidemics spreads on a finite fraction of the population, resulting in a pandemics. If R < 1 the epidemics is in the subcritical regime: the epidemics affects a infinitesimal fraction of the population and can be considered suppressed. If R = 1 the epidemics is in the critical regime: this is the regime that separates the previous two regimes. Consider an epidemics with infectivity = 1/4. Investigate how the network topology can determine the regime of the epidemics in the following cases. (C) Take the scale-free network considered in point (B) calculate R and establish in which regime the epidemic process is if m = 2, K = 50.

Linear Algebra: A Modern Introduction
4th Edition
ISBN:9781285463247
Author:David Poole
Publisher:David Poole
Chapter7: Distance And Approximation
Section7.3: Least Squares Approximation
Problem 34EQ
icon
Related questions
Question
The reproduction number R of an epidemic spreading process taking place
on a random network with degree distribution P(k) is given by
R=A
(k(k-1))
(k)
where k indicates the degree of the nodes and the average (...) indicates the
average over the degree distribution, P(k).
Therefore R is the product between the infectivity A of the virus, due to its
biological fitness and the branching ratio of the network, depending on the
degree distribution of the network and given by (k(k-1))/(k).
According to the value of R the epidemic can be in different regimes:
• If R > 1 the epidemics is in the supercritical regime: the epidemics
spreads on a finite fraction of the population, resulting in a pandemics.
If R < 1 the epidemics is in the subcritical regime: the epidemics
affects a infinitesimal fraction of the population and can be considered
suppressed.
• If R = 1 the epidemics is in the critical regime: this is the regime that
separates the previous two regimes.
Consider an epidemics with infectivity = 1/4. Investigate how
the network topology can determine the regime of the epidemics
in the following cases.
(C) Take the scale-free network considered in point (B) calculate R and
establish in which regime the epidemic process is if m = 2, K = 50.
Transcribed Image Text:The reproduction number R of an epidemic spreading process taking place on a random network with degree distribution P(k) is given by R=A (k(k-1)) (k) where k indicates the degree of the nodes and the average (...) indicates the average over the degree distribution, P(k). Therefore R is the product between the infectivity A of the virus, due to its biological fitness and the branching ratio of the network, depending on the degree distribution of the network and given by (k(k-1))/(k). According to the value of R the epidemic can be in different regimes: • If R > 1 the epidemics is in the supercritical regime: the epidemics spreads on a finite fraction of the population, resulting in a pandemics. If R < 1 the epidemics is in the subcritical regime: the epidemics affects a infinitesimal fraction of the population and can be considered suppressed. • If R = 1 the epidemics is in the critical regime: this is the regime that separates the previous two regimes. Consider an epidemics with infectivity = 1/4. Investigate how the network topology can determine the regime of the epidemics in the following cases. (C) Take the scale-free network considered in point (B) calculate R and establish in which regime the epidemic process is if m = 2, K = 50.
Expert Solution
steps

Step by step

Solved in 3 steps with 13 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning