College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Expert Solution
arrow_forward
Step 1: Given data
Resistance of an RC circuit is
Capacitance is
At time , the voltage across capacitor is
Note:
Find:
Time taken by capacitor to discharge to of its initial voltage.
Step by stepSolved in 4 steps with 27 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The capacitor in the circuit shown is fully charged by a 24 V battery. The switch is closed at t = 0. At sometime after the switch is closed, the voltage across the capacitor is measured to be 10 V. What is the current in the circuit at this time, in Ampere? C = 3.0 µF, and R = 2.0 02. Your answer needs to have 2 significant figures, including the negative sign in your answer if needed. Do not include the positive sign if the answer is positive. No unit is needed in your answer, it is already given in the question statement. Cilarrow_forwardThe Q vs t graph shown below is for the capacitor of an RC circuit. Q (C) 8 6. 4. 2. O 6. t(s) 10 20 30 40 50 60 70 80 90 100 4. Second graph The Q vs t graph shown below is for the capacitor of an RC circuit. Q (C) 8 2 2 3 4 Determine the time constant of the RC circuit. t(s) T= If C = 4 F, determine R. R = Ω In this case, was the capacitor charging or discharging? --Select- Determine the time constant of the RC circuit. T= If R = 102, determine C. C = In this case, was the capacitor charging or discharging? -Select- + #arrow_forwardWhat is the voltage drop across R in the circuit below if the shown resistances have the following values: R1=10 N R2=10 N R3=10 N and the voltage provided by the voltage source is 13 volts. R1 R2 R3 adap fo Varrow_forward
- Consider the following circuit diagram. The potential difference across the battery is 40.0 volts, and it supplies a current of 5.00 amperes to the circuit. There is a current of of 2.70 amperes flowing through R1. Resistor R2 has a resistance of 5.50 ohms. What is the resistance of R3? Answer in ohms to two decimal places, but do not include units in your answer.arrow_forwardA simple RC circuit has a switch, a resistor (R), and a capacitor (C) all wired together in series. Assuming the switch is open initially and capacitor is fully charged to a potential V and holds a charge Qo, which of the following expressions describes the current through the circuit at time t=RC after the switch is closed? I = Ve R Selected Answer: V² Answers: I RC I = V R.e I = RC·e V %3Darrow_forwardThe RC circuit shown in (Figure 1) can be used in an artificial pacemaker to establish a normal heart rhythm by generating periodic electrical impulses. The box labeled "controller" behaves as an open circuit until the voltage drop across the capacitor reaches a preset limit. Once that limit is reached, the capacitor discharges its stored energy in the form of an electrical impulse to the heart, starts to recharge, and then the process repeats. Figure + Vs R m C + VC Part A Calculate the heart rate in beats per minute for R = 200 kn and C = 5.0 μF, if the capacitor discharges when its voltage reaches 80% of the source voltage Vs. Express your answer in beats per minute to three significant figures. H = Submit 17 ΑΣΦ V ↓↑ Request Answer < Return to Assignment vec Provide Feedback ? beats per minutearrow_forward
- A 30 Ohm resistor and 1.673 F capacitor are connected in series to a 60 V DC voltage source (RC Circuit). What will be the charge stored in the capacitor 4.38 seconds after the series is connected?arrow_forwardQ7.1 The circuit shown below is an RC circuit that consists of R1 = 100 kn, R2 = 200 kn, R3 = 300 kn, C = 5.00 μF, and E = 9.00 V. When the switch is closed at t = 0, the capacitor starts from an uncharged state. The following inquiries relate to the performance of the circuit. a. What is the RC circuit's time constant? b. When will the capacitor be 80% charged? c. At that point, what is the current passing through the R3 resistor? E S R₁ R3 R₂ wwwarrow_forwardConsider the RC circuit shown in the figure below. If the resistance of the circuit is R=4kN and the capacitance of the initially uncharged capacitor is C=11µF. If emf of the battery the circuit is connected to is E=17V and the switch is closed at t=0, determine how long it would take for the capacitor to reach 86% of its maximum charge. Express your answer in units of ms (milliseconds) using one decimal place. + Sarrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON