
University Physics Volume 2
18th Edition
ISBN: 9781938168161
Author: OpenStax
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Question
thumb_up100%
![The RC charging circuit in a camera flash unit has a voltage source of 255 V and a capacitance of 116 μF.
(a) Find its resistance \( R \) (in ohms) if the capacitor charges to 90.0% of its final value in 16.2 s.
[Input box] Ω
(b) Find the average current (in A) delivered to the flash bulb if the capacitor discharges 90.0% of its full charge in 1.34 ms.
[Input box] A
Note: There is a "HINT" button next to the problem statement, indicating possible additional guidance or formulae for solving the problem.](https://content.bartleby.com/qna-images/question/75efe16f-f4aa-4987-9727-1ee0c2946a7c/be19166c-dd8a-48e6-b22d-d32b3a54eb46/sitew0e_thumbnail.png)
Transcribed Image Text:The RC charging circuit in a camera flash unit has a voltage source of 255 V and a capacitance of 116 μF.
(a) Find its resistance \( R \) (in ohms) if the capacitor charges to 90.0% of its final value in 16.2 s.
[Input box] Ω
(b) Find the average current (in A) delivered to the flash bulb if the capacitor discharges 90.0% of its full charge in 1.34 ms.
[Input box] A
Note: There is a "HINT" button next to the problem statement, indicating possible additional guidance or formulae for solving the problem.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 2 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A flashing lamp in a Christmas earring is based on an RC discharge of a capacitor through its resistance. The effective duration of the flash is 0.250 s, during which it produces an average 0.500 W from an average 3.00 V. (a) What energy does it dissipate? (b) How much charge moves through the lamp? (c) Find the capacitance, (d) What is the resistance of the lamp? (Since average values are given for some quantities, the shape of the pulse profile is not needed.)arrow_forwardConsider a circuit that consists of a real battery with an emf and an internal resistance of r connected to a variable resistor R. (a) In order for the terminal voltage of the battery to be equal to the emf of the battery, what should the resistance of the variable resistor be adjusted to? (b) In older to get the maximum current from the battery, what should the resistance variable resistor be adjusted to? (c) In order for the maximum power output of the battery to be reached, what should the resistance of the variable resistor be set to?arrow_forwardA battery has an emf of 15.0 V. The terminal voltage of the battery is 11.6 V when it is delivering 20.0 W of power to an external load resistor R. (a) What is the value of R? (b) What is the internal resistance of the battery?arrow_forward
- A 12.0-V emf automobile battery has a terminal voltage of 16.0 V when being charged by a current of 10.0 A. (a) What is the battery’s internal resistance? (b) What power is dissipated inside the battery? (c) At what rate (in °C/min ) will its temperature increase if its mass is 20.0 kg and it has a specific heat of 0.300 kcal/kg • °C, assuming no heat escapes?arrow_forwardA homemade capacitor is constructed of 2 sheets of aluminum foil with an area of 2.00 square meters, separated by paper, 0.05 mm thick, of the same area and a dielectric constant of 3.7. The homemade capacitor is connected in series with a 100,00- resistor, a switch, and a 6.00-V voltage source, (a) What is the RC time constant of the circuit? (b) What is the initial current through the circuit, when the switch is closed? (c) How long does it take the current to reach one third of its initial value?arrow_forwardA 160F capacitor charged to 450 V is dischargedthrough a 31.2k resistor, (a) Find the time constant.(b)Calculate the temperature increase of the resistor, given that its mass is 2.50 g and its specific heat is 1.67kJ/kg °C,noting that most of the thermal energy is retained in the short time of the discharge, (c) Calculate the new resistance, assuming it is pure carbon. (d) Does this change in resistance seem significant?arrow_forward
- A 1,00-?O voltmeter is placed in parallel with a 75.0kresistor in a circuit, (a) Draw a circuit diagram of the connection, (b) What is the resistance of the combination? If the voltage across the combination is kept the same as it was across the 75.0-kresistor alone, what is the percent increase in current? (d) If the current through the combination is kept the same as it was through the 75.0-kresistor alone, what is the percentage decrease in voltage? (e) Are the changes found in parts (c) and (d) significant? Discuss.arrow_forwardA child's electronic toy is supplied by three 1.58-V alkaline cells having internal resistances of 0.0200 inseries with a 1.53-V carbon-zinc dry cell having a 0.100- internal resistance. The load resistance is 10.0 . (a) Draw a circuit diagram of the toy and itsbatteries, (b) What current flows? (c) How much power is supplied to the load? (d) What is the internal resistance of the dry cell if it goes bad, resulting in only 0.500 W being supplied to the load?arrow_forwardAn automobile starter motor has an equivalent resistance of 0.0500 and is supplied by a 12.0-V battery with a 0.0100- internal resistance, (a) What is thecurrent to the motor? (b) What voltage is applied to it? (c) What power is supplied to the motor? (d) Repeat these calculations for when the battery connections are corroded and add 0.0900 to the circuit. (Significant problems are caused by even small amounts of unwanted resistance in low-voltage, high-current applications.)arrow_forward
- A student makes a homemade resistor from a graphite pencil 5.00 cm long, where the graphite is 0.05 mm indiameter. The resistivity of the graphite is =1.38102/m . The homemade resistor is place inseries with a switch, a 10.00-mF capacitor and a 0.50-V power source, (a) What is the BC time constant of the circuit? (b) What is the potential drop across the pencil 1.00 s after the switch is closed?arrow_forwardA 20.00-V battery is used to supply current to a 10-k resistor. Assume the voltage drop across any wires used for connections is negligible, (a) What is the current through the resistor? (b) What is the power dissipated by the resistor? (c) What is the power input from the battery; assuming all the electrical power is dissipated by the resistor? (d) What happens to the energy dissipated by the resistor?arrow_forward(a) During surgery, a current as small as 20.0A applied directly to the heart may cause ventricular fibrillation. If the resistance of the exposed heart is 300 what is the smallest voltage that poses thisdanger? (b) Does your answer imply that special electrical safetyprecautions are needed?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning


Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning