Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
The pressure in a section of a horizontal pipe of diameter d1 = 2.0 cm is p1 = 142 kPa. The water flows through the pipe at a volumetric flow rate V = 2.8 L/s. If the pressure at a certain point is reduced to p2 = 42.6 kPa, due to a throttling of a pipe section, what should the diameter d2 of the throttling section be? Consider the density of water ρ = 1.0 g/cm3.
Choose the correct option:
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 3 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Air flows at 700 m/s through a long duct in a wind tunnel, where the temperature is 15°C and the absolute pressure is 90 kPa. The leading edge of a wing in the tunnel is represented by the 8° wedge. The angle of attack is set at a = 1.5°. (Figure 1) Figure 700 m/s 4° Ja 4° 1 of 1 Part A Determine the pressure created on its top surface. Express your answer to three significant figures and include the appropriate units. p= O D Submit Value μA Provide Feedback Request Answer 20 Units ? Next >arrow_forwardA fluid enters a pipe at speed v1=0.1 m/s. the diameter of the tube is d=200mm and the fluid flowing through the pipe is mercury with a specific gravity of 13.6. the mass flow rate isarrow_forwardSAE 30 oil at 20°C flows in the 2.5-cm-diameter pipe as shown in the figure below, which slopes at 37°. For SAE 30 oil, take ρ = 891 kg/m3 and μ = 0.29 kg/m⋅s. Determine the flow rate in m3/h. The flow rate is m3/h.arrow_forward
- For the pipe-flow reducing section of the figure shown, D1 = 8 cm, D2 = 5 cm, and p2=1 atm. Allfluids are at 20°C. If V1 = 5 m/s and the manometer reading is h = 58 cm, estimate the totalhorizontal force resisted by the flange bolts.arrow_forwardWater is flowing in a 90ο pipe with uniform cross section area of A=0.0083 m2. The velocity along the horizontal direction is v1=6.0 m/s. The pressure at the section 1 is p1=500kPa. Elevation difference and energy losses can be neglected. The density of water is ρ=1000kg/m3. An external force is needed to hold the pipe in equilibrium. (1) Select the correct expression of the external force component in the horizontal direction Rx_________ A. B. C. D.arrow_forwardWater flows into a tank and out through another pipe, as shown in the figure below. The water in the tank has a surface area, Asurf = 5.6 m². At the bottom of the tank there is a door inclined at an angle = 45 degrees with respect to the horizontal. The door has a length L = 0.9 m and a width w=0.8 m (out of the page). The flowrate into the tank is Q₁ (t) = 0.3 m³/s and the flowrate out is Qo(t) = 0.07 m 3/5 At time t = 0, the water has a depth ho = 2 m. The density of water is p = 1000 kg/m³. Asurf x h(t) a) Find the pressure (in kilopascals) at time t = 0 Qoutarrow_forward
- (b) Use Bernoulli's energy balance equation (E = PV + 0.5*mU²), assume volume flow rate remains constant along the pipe such that (Q=UA), and assume that pressure is balanced manometer to perform the following derivations: (i) (ii) (iii) 1- P2 in the pipe (substitute U2 in this step). an expression for P₁ an expression for P₁ P2 in the U-tube manometer. Set the expressions in parts (i) and (ii) equal to one another and derive the flow equation: U₁ = 2 (Pm -1) gh BA - 1arrow_forwardWater enters a shower head through a pipe of internal radius r = 6.4 mm, and leaves through 30 small holes, each of radius r1 = 0.08 mm. When the faucet is opened, the water moves in the tube at a speed of 90 cm/s. What is the volumetric flow of the shower head in liters per second?arrow_forwardYour team is designing a chemical processing plant. You are the liquid handling and transportation specialist, and you need to transport a solvent (μ = 3.1 cP, ρ = 122k kg/m3) from a storage tank to a reaction vessel. Due to other equipment constraints, the fluid velocity must be 0.8 m/sec, and you must use stainless steel piping (ε = 0.00015 mm) with a total length (L) of 12 m. Determine the pipe inner diameter (ID) you will need to achieve a pressure drop of 0.3 kPa. Use the Moody chart.arrow_forward
- Air having density p = 0.981 kg/m³ is flowing in a wind tunnel. A differential manometer connected to a pitot tube is used to measure the dynamic pressure of the air at the pitot tube location. The liquid in the manometer is oil having a specific gravity of 0.826, and the manometer reading is 76.2 mm. The wind tunnel is on the CU campus in Denver where g = 9.796 m/s?. a) Find the dynamic pressure of the air (answer: 615.8 Pa). b) Find the speed of the air at the pitot tube location (answer: 35.4 m/s). Air p = 0.981 kg/m³ h = 76.2 mm Oil, SG = 0.826arrow_forwardQuestion is a fluid mechanicsarrow_forwardA horizontal fan (such as that shown in example 5.24) pulls in stagnant air (ie. basically stationary air) atatmospheric pressure; the air approaches the fan outlet with speed 44 ft/sec (ie. 30 mph) and with static pressure 0.3 psi. The air flowing through the fan can be assumed to have a constant density of 2.4*10-3 slug/ft3. The air losses due to friction are 0.1 psi (or 6000 ft-lb/slug of air passing from the fan inlet to the outlet). a) Determine the shaft work in ft-lb/slug b) If the fan outlet area is 2 ft2, determine the rate of work on the air.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY