College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Topic Video
Question
The position of a particle moving along the x axis depends on the time according to the equation x = ct4 - bt6, where x is in meters and t in seconds. Let c and b have numerical values 2.7 m/s4 and 1.4 m/s6, respectively. From t = 0.0 s to t = 1.7 s, (a) what is the displacement of the particle? Find its velocity at times (b) 1.0 s, (c) 2.0 s, (d) 3.0 s, and (e) 4.0 s. Find its acceleration at (f) 1.0 s, (g) 2.0 s, (h) 3.0 s, and (i) 4.0 s.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 5 steps with 4 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A particle starts from rest at x = -2.8 m and moves along the x-axis with the velocity history shown. Plot the corresponding acceleration and the displacement histories for the 4 seconds. Find the time t when the particle crosses the origin. After you have the plots, answer the questions. v, m/s IN 1 1 2 3 4.8 0 Questions Att = 0.39 s, X = At t = 1.33 s, X = At t = 2.51 s, X = IN i 4 -1.1 The particle will cross the origin when t = 3 m, m, 3 m, V = i V = V = i S. m/s, a = m/s, a = m/s, a = m/s² m/s² m/s²arrow_forwardChapter 02, Problem 10 In reaching her destination, a backpacker walks with an average velocity of 1.26 m/s, due west. This average velocity results, because she hikes for 6.62 km with an average velocity of 2.54 m/s due west, turns around, and hikes with an average velocity of 0.381 m/s due east. How far east did she walk (in kilometers)? dw VE West East dɛ Number Units the tolerance is +/-2% Click if you would like to Show Work for this question: Open Show Workarrow_forwardA particle moves so that its position (in meters) as a function of time (in seconds) is r = î + 5t2 j + 5t k. (Use the following as necessary: t.) (a) Write an expression for its velocity as a function of time. V = m/s (b) Write an expression for its acceleration as a function of time. a = m/s?arrow_forward
- The position of a particle moving along the x axis depends on the time according to the equation x = ct - btº, where x is in meters and t in seconds. Let c and b have numerical values 2.5 m/s4 and 1.2 m/s³, respectively. From t = 0.0 s tot = 2.5 s, Find its velocity at times (b) 1.O s, (c) 2.0 s, (d) 3.0 s, and (e) 4.0 s. Find its acceleration at (i) 4.0 s.arrow_forwardThe time dependent 1-dimensional motion of an object follows X = t2 - 4.7t +1.1 where X is in meters and t in seconds. Find the displacement between t = 2.7 s and t = 4.4 s.arrow_forwardIf the velocity of an object is given by V = 5* t3+2 - 6*t3 +6, when x0 = 5, what is its displacement after 3 seconds?arrow_forward
- Given v(t) = 21 + 20 t, where v is in m/s and t is in s, use calculus to determine the total displacement from t₁ = 1.5 s to t₂ = 3.1 s. Express your answer using two significant figures.arrow_forwardAn object is thrown straight upward with an initial velocity of 11.7 m/s. What is the object's maximum upward displacement? Enter a number assuming proper SI Units.arrow_forwardTwo-dimensional motion: Object A has a position as a function of time given by rA(t) = (3.00 m/s)t i + (1.00 m/s2)t2j. Object B has a position as a function of time given by r p(t) = (4.00 m/s)ti + (-1.00 m/s2)t2i. All quantities are SI units. What is the distance between object A and object B at timet= 3.00 s?arrow_forward
- The position of a particle moving along the x axis varies in time according to the expression x = 6t 2, where x is in meters and t is in seconds. Evaluate its position at the following times. (a) t = 2.40 s (b) t = 2.40s + At Xf = (c) Evaluate the limit of Ax/At as At approaches zero to find the velocity at t = 2.40 s. m/sarrow_forwardThe velocity of a particle is given by v(t) =t² – 2t. The position of the particle at the time t = 0 is S(0) = 0. 1. Find a formula for the position S(t) at time t. 2. Find the displacement of the object on [0,3]. 3. Find the total distance traveled by the particle on [0,3].arrow_forwardThe acceleration of a particle is a constant. At t = 0 the velocity of the particle is (15.8î + 18.4ĵ) m/s.At = 3.6 s the velocity is 10.5ĵ m/s. (Use the following as necessary: t. Do not include units in your answers.) (b) How do the position (in m) and velocity (in m/s) vary with time? Assume the particle is initially at the origin.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON