The position as a function of time x(t) of a simple harmonic oscillator is given by: x(t) = A cos(wt) where A is the amplitude and w is the angular velocity. a) What is the range of possible values of x permitted for this oscillator? b) Derive the probability density function of p(x) for this oscillator. c) Validate that p(x) is normalized.
The position as a function of time x(t) of a simple harmonic oscillator is given by: x(t) = A cos(wt) where A is the amplitude and w is the angular velocity. a) What is the range of possible values of x permitted for this oscillator? b) Derive the probability density function of p(x) for this oscillator. c) Validate that p(x) is normalized.
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images