College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
The plates of a parallel plate capacitor are 2.5 cm apart. Between the plates they create a uni-
form electric field with a magnitude of 525 N/C. What is the potential difference between the
plates?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 0.079 μF capacitor is being held at a potential difference of 490 μV. a) What is the charge, in coulombs, on one of the plates? b) If you measure the size of each plate to be 49 cm2, how far apart are the plates, in micrometers? c) What is the magnitude of the electric field inside this capacitor, in newtons per coulomb?arrow_forwardA parallel-plate capacitor is fully charged by a battery. Now the battery is disconnected, and the distance between the plates increases. What happens to the electric field in the capacitor? Answers: stays the same increases decreasesarrow_forwardA 0.069 μF capacitor is being held at a potential difference of 24 μV. Part (a) What is the charge, in coulombs, on one of the plates? Part (b) If you measure the size of each plate to be 41 cm2, how far apart are the plates, in micrometers? Part (c) What is the magnitude of the electric field inside this capacitor, in newtons per coulomb?arrow_forward
- A proton is between the plates of a parallel plate capacitor. The charge density of the plates is 5 nC/m2. What is the acceleration of the proton?arrow_forwardA parallel-plate capacitor has an area of 2.00 cm2, and the plates are separated by 2.00 mm with air between them. The capacitor stores a charge of 500 pC. (a) What is the potential difference across the plates of the capacitor? V(b) What is the magnitude of the uniform electric field in the region between the plates? N/Carrow_forwardOppositely charged parallel plates are separated by 5.36 mm. A potential difference of 600 V exists between the plates. (a) What is the magnitude of the electric field strength between the plates? N/C(b) What is the magnitude of the force on an electron between the plates? N(c) How much work must be done on the electron to move it to the negative plate if it is initially positioned 2.92 mm from the positive plate? Jarrow_forward
- A parallel plate capacitor has a potential difference between it's plates of 1.2 V and a plate separation distance of 2.0 mm. What is the magnitude of the electric field if a material that has a dielectric constant of 3.3 is inserted between the plates?arrow_forwardThe figure below shows the equipotential surfaces of an electric dipole in the xy-plane. The x and y scales are in units of meter. The charge on the left is positive. Each color change represents a a change in the potential of 5 V. Estimate the magnitude and direction of the electric field in units of V/m N/C at x 13.5 m, y = 13.5 m. = 24.5 22.5 20.5 18.5 16.5 14.5 12.5 10.5 8.5 6.5 4.5 2.5 0.5 0.5 2.5 4.5 6.5 8.5 10.5 12.5 14.5 16.5 18.5 20.5 22.5 24.5arrow_forwardThe electric field strength is 1.90×104 N/C inside a parallel-plate capacitor with a 0.600 mm spacing. An electron is released from rest at the negative plate. What is the electron's speed when it reaches the positive plate?arrow_forward
- When a potential difference of 132 V is applied to the plates of a parallel-plate capacitor, the plates carry a surface charge density of 20.0 nC/cm². What is the spacing between the plates? μmarrow_forwardThe energy density in the region between the plates of a capacitor is 0.01 J/m^3. What is the magnitude of the electric fields between the plates? (E0=8.854 x 10^-12 C^2/Nm^2)arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON