The Michaelis-Menten equation is often used to describe the kinetic characteristics of an enzyme-catalyzed reaction. Vmax [S] U = Km + [S] where v is the velocity, or rate, Vmax is the maximum velocity, Km is the Michaelis-Menten constant, and [S] is the substrate concentration. A graph of the Michaelis-Menten equation is a plot of a reaction's initial velocity (vo) at different substrate concentrations ([S]). First, move the line labeled Vmax to a position that represents the maximum velocity of the enzyme. 300 V Next, move the line labeled 1/2 Vmax to its correct position. max 275 Then, move the line labeled Km to its correct position. 250 225 200 175 Michaelis–Menten curve 150 K a 125 m 100 1/2 V 75 max 50 25 10 20 30 40 50 60 70 80 90 100 [S] (µM) Incorrect Estimate the values for Vmax and Km. Vmax 175 µM/min Km 14 µM v (µM/min)

Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
icon
Related questions
Question
The Michaelis-Menten equation is often used to describe the kinetic characteristics of an enzyme-catalyzed reaction.
Vmax [S]
U =
Km + [S]
where v is the velocity, or rate, Vmax is the maximum velocity, Km is the Michaelis-Menten constant, and [S] is the
substrate concentration.
A graph of the Michaelis-Menten equation is a plot of a reaction's initial velocity (vo) at different substrate concentrations
([S]).
First, move the line labeled Vmax to a position that represents
the maximum velocity of the enzyme.
300
V
Next, move the line labeled 1/2 Vmax to its correct position.
max
275
Then, move the line labeled Km to its correct position.
250
225
200
175
Michaelis–Menten curve
150
K
a 125
m
100
1/2 V
75
max
50
25
10
20
30
40
50
60
70
80
90
100
[S] (µM)
Incorrect
Estimate the values for Vmax and Km.
Vmax
175
µM/min
Km
14
µM
v (µM/min)
Transcribed Image Text:The Michaelis-Menten equation is often used to describe the kinetic characteristics of an enzyme-catalyzed reaction. Vmax [S] U = Km + [S] where v is the velocity, or rate, Vmax is the maximum velocity, Km is the Michaelis-Menten constant, and [S] is the substrate concentration. A graph of the Michaelis-Menten equation is a plot of a reaction's initial velocity (vo) at different substrate concentrations ([S]). First, move the line labeled Vmax to a position that represents the maximum velocity of the enzyme. 300 V Next, move the line labeled 1/2 Vmax to its correct position. max 275 Then, move the line labeled Km to its correct position. 250 225 200 175 Michaelis–Menten curve 150 K a 125 m 100 1/2 V 75 max 50 25 10 20 30 40 50 60 70 80 90 100 [S] (µM) Incorrect Estimate the values for Vmax and Km. Vmax 175 µM/min Km 14 µM v (µM/min)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Theories of Reaction Rates
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Chemistry
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
Principles of Instrumental Analysis
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
Organic Chemistry
Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY