Structural Analysis
6th Edition
ISBN: 9781337630931
Author: KASSIMALI, Aslam.
Publisher: Cengage,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
thumb_up100%
The maximum measured Young’s modulus for a carbon nanotube is 950 GPa. How much stress would have to be applied to this nanotube to have the same strain as in the steel sample?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 5 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- A 5-mm-thick rectangular alloy bar is subjected to ajtensile load P by pins at A and B, as shown in the figure. The width of the bar is w = 33 mm. Strain gages bonded to the specimen measure the following strains in the longitudinal (x) and transverse (y) directions: €, =710 με and ε,--255 με (a) Determine Poisson's ratio for this specimen. (b) If the measured strains were produced by an axial load of P = 24 kN, what is the modulus of elasticity for this specimen? Answers: (a) v= (b) E= GPaarrow_forwardA tensile stress is to be applied along the long axis of a cylindrical nickel rod that has a diameter of 11 mm. Determine the magnitude of the load required to produce 2.5 × 10−3mm change in diameter if the deformation is entirely elastic.arrow_forwardGiven your understanding of what initiates and controls failure in materials, which of the following will increase the failure strength or lifetime of a test piece or component and why? a. Decreasing the difference between the maximum and minimum stress values, as this effects the stress concentration factor b. Decreasing the temperature below the brittle-ductile transition temperature, to make it harder C. Polishing to reduce surface defects Od. Increasing its volume, to give a larger cross sectional area Oe. Increasing the grain size so there are less grain boundaries to initiate failurearrow_forward
- Solve it correctly please.arrow_forwardA prismatic bar has a cross-section of 25 mm x 50 mm and a length of 2000 mm. Under an axial load of 100 kN, the measured elongation of the bar is 2 mm. The tensile stress and % strain in the bar are?arrow_forwardFor some metal alloy, a true stress of 345 MPa (50040 psi) produces a plastic true strain of 0.02. How much will a specimen of this material elongate when a true stress of 411 MPa (59610 psi) is applied if the original length is 450 mm (17.72 in.)? Assume a value of 0.22 for the strain-hardening exponent, n. i mmarrow_forward
- A cylindrical specimen of a metal alloy 47.5 mm long and 9.72 mm in diameter is stressed in tension. A true stress of 397 MPa causes the specimen to plastically elongate to a length of 54.3 mm. If it is known that the strain-hardening exponent for this alloy is 0.2, calculate the true stress (in MPa) necessary to plastically elongate a specimen of this same material from a length of 47.5 mm to a length of 55.8 mm. i MPaarrow_forwardIn a tensile test for an aluminum alloy, the sample is 2 inches long and 0.5 inches in diameter. The proportional portion of the tension stress-strain diagram for an aluminum alloy is shown below. It the diameter change of the sample was also monitored during the above test, and it was found that the lateral strain of the sample is 1/3 of its axial longitudinal strain, what is the Poisson' ratio of the material under test: ___. Calculate your answer to 2 decimal place.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Structural Analysis (10th Edition)Civil EngineeringISBN:9780134610672Author:Russell C. HibbelerPublisher:PEARSONPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
- Fundamentals of Structural AnalysisCivil EngineeringISBN:9780073398006Author:Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel LanningPublisher:McGraw-Hill EducationTraffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage Learning
Structural Analysis (10th Edition)
Civil Engineering
ISBN:9780134610672
Author:Russell C. Hibbeler
Publisher:PEARSON
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Fundamentals of Structural Analysis
Civil Engineering
ISBN:9780073398006
Author:Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:McGraw-Hill Education
Traffic and Highway Engineering
Civil Engineering
ISBN:9781305156241
Author:Garber, Nicholas J.
Publisher:Cengage Learning