The mass density of water vapour at 327.6 atm and 776.4 K is 133.2 kg m−3. Given that for water a = 5.464 dm6 atm mol−2, b = 0.03049 dm3 mol−1, and M = 18.02 g mol−1, calculate (a) the molar volume. Then calculate the compression factor (b) from the data, and (c) from the virial expansion of the van der Waals equation.

Principles of Modern Chemistry
8th Edition
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Chapter9: The Gaseous State
Section: Chapter Questions
Problem 34P
icon
Related questions
icon
Concept explainers
Question

The mass density of water vapour at 327.6 atm and 776.4 K is 133.2 kg m−3. Given that for water a = 5.464 dm6 atm mol−2, b = 0.03049 dm3 mol−1, and M = 18.02 g mol−1, calculate (a) the molar volume. Then calculate the compression factor (b) from the data, and (c) from the virial expansion of the van der Waals equation.

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 4 images

Blurred answer
Knowledge Booster
Molecular Motion in Gases
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Modern Chemistry
Principles of Modern Chemistry
Chemistry
ISBN:
9781305079113
Author:
David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:
Cengage Learning
Fundamentals Of Analytical Chemistry
Fundamentals Of Analytical Chemistry
Chemistry
ISBN:
9781285640686
Author:
Skoog
Publisher:
Cengage