The manufacturer of a boat needs to approximate the center of mass of a section of the hull. A coordinate system is superimposed on a prototype (see figure). The measurements (in feet) for the right half of the symmetric prototype are listed in the table. X I d(x) = d 0 0.5 1.0 1.5 2 1.50 1.45 1.30 0.50 ++ -20 -1.0 0.48 1.0 0.99 d 4+++ 1.0 0.43 0.33 0 X 0 2.0 (a) Use Simpson's Rule to approximate the center of mass of the hull section. (Round your answers to three decimal places.) (x, 7) = ( (b) Use the regression capabilities of a graphing utility to find fourth-degree polynomial models for both curves shown in the figure. (Use nine data points. Round your coefficients to five decimal places.) f(x)= 2.6639

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Also what would the center of mass for the hull section?
The manufacturer of a boat needs to approximate the center of mass of a section of the hull. A coordinate system is superimposed on a prototype (see figure). The measurements (in feet) for the right
half of the symmetric prototype are listed in the table.
x 0 0.5 1.0
1.5 2
1.50 1.45 1.30 0.99 0
1
d 0.50 0.48
d(x) =
-2.0 -1.0
1.0-
0.43
>d
1.0
x
0.33
2.0
(a) Use Simpson's Rule to approximate the center of mass of the hull section. (Round your answers to three decimal places.)
(x, y) = (
0
(b) Use the regression capabilities of a graphing utility to find fourth-degree polynomial models for both curves shown in the figure. (Use nine data points. Round your coefficients to five
decimal places.)
f(x) = 2.6639
Transcribed Image Text:The manufacturer of a boat needs to approximate the center of mass of a section of the hull. A coordinate system is superimposed on a prototype (see figure). The measurements (in feet) for the right half of the symmetric prototype are listed in the table. x 0 0.5 1.0 1.5 2 1.50 1.45 1.30 0.99 0 1 d 0.50 0.48 d(x) = -2.0 -1.0 1.0- 0.43 >d 1.0 x 0.33 2.0 (a) Use Simpson's Rule to approximate the center of mass of the hull section. (Round your answers to three decimal places.) (x, y) = ( 0 (b) Use the regression capabilities of a graphing utility to find fourth-degree polynomial models for both curves shown in the figure. (Use nine data points. Round your coefficients to five decimal places.) f(x) = 2.6639
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,