College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 3 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A proposed "star wars" antimissile laser is to focus infrared light with 2.8-µm wavelength to a 50-cm-diameter spot on a missile 2500 km distant. Find the minimum diameter for a concave mirror that can achieve this spot size, given the diffraction limit. (Your answer suggests one of many technical difficulties faced by antimissile defense systems.)arrow_forwardA beam splitter is an optical device that splits a beam of light - half of the incident light is transmitted through the beam splitter, and half is reflected. Supposed we could make a beam splitter that reflects only 35% and transmits the other 65% (rather than 50/50). A beam of laser light with wavelength 656 nm is incident on our imaginary 35/65 beam splitter, at an angle of 45°. The beam pulse lasts 1.50 ms, and has a diameter of 0.60 mm. The intensity of the transmitted beam is 3.25 kW/m2. Draw a clear physics diagram of the problem. What is the energy of a photon from this laser? Find the peak Electric field of the reflected beam. Find the peak Magnetic field of the incident beam. What color is the laser beam? What momentum is transferred to the beam splitter by the laser pulse?arrow_forwardAn astronaut on the International Space Station (ISS) is experimenting with a solid-state green laser communications system from on-orbit at 435 km altitude to the earth's surface with a wavelength of 532nm and beam divergence (width) of 10 radians or 5.73 x 10-150 << 1°. The indices of refraction in free space and the atmosphere are no = 1.00000 ..., and na = 1.000293. Although density in the atmosphere varies continuously from the thinness of the upper atmosphere (near p → 0) to higher density at the surface, refraction can be modeled as a “surface' mid-atmosphere just like classic Snell's Law calculations. (d) What is the refracted wavelength, and the speed of the laser beam in air? (e) If the communications bit rate is the inverse of the laser frequency period [s], what is this bit rate?arrow_forward
- The diffraction grating is a way of separating or dispersing light of different wavelengths, producing a spectrum of light. The grating interferes light constructively in particular directions: dsinθm=mλdsinθm=mλ For a particular angle, we calculate the wavelength. The grating constant (or line density) is 500 lines per mm -- every millimeter has 500 lines scratched onto it, equally spaced. The quantity d is the distance between the lines, and λ is the light wavelength. In the previous problem, calculate y2, where one of the second-order spots appears on the meter stick. Either that, or show that y2 can't be determined.arrow_forwardYou are looking into the headlights of a distant vehicle on an autoroute in France. The driver has shown his resistance to the Europeanization of Europe by resolutely continuing to use yellow headlights (wavelength 550 nm). (a) What is the theoretical limit of angular resolution of your eyes for these headlights when your iris has a diameter of 6.00 mm? (Express your answer in milli-radians (mrad).) (b) If the headlights of the car are separated by 1.80 m, with this resolution at what distance would you be just be able to tell that the vehicle had, in fact, two headlights? (Express your answer in km.)arrow_forwardIn a certain photo-chemical experiment, the light from a sodium lamp at 589.0 nmneeds to be diffracted at an angle of 55 degrees in thesecond diffraction order. Howmany lines/mm would your grating need to have in orderto do this?arrow_forward
- You measure the distance between the finges of a diffraction pattern as follows: Distance (mm): 3.01, 3.27, 3.28 You measure the distance eight additional times to obtain the following ten values: Distance (mm): 3.01, 3.27, 3.28, 3.31, 3.16, 3.17, 3.15, 3.25, 3.18, 1.46 What values for the distance and uncertainty would you report using the first three measurements and the entire set of ten measurements? Group of answer choices First three: (3.22 ± 0.03) mm, All ten: (3.22 ± 0.02) mm First three: (3.19 ± 0.09) mm, All ten: (3.0 ± 0.2) mm First three: (3.186667 ± 0.07216237) mm, All ten: (3.201000 ± 0.02613236) mm First three: (3.216667 ± 0.02880329) mm, All ten: (3.216000 ± 0.02379916) mm First three: (3.240000 ± 0.04082483) mm, All ten: (3.217000 ± 0.02702036) mm First three: (3.24 ± 0.04) mm, All ten: (3.22 ± 0.03) mmarrow_forwardAstronomers observe the chromosphere of the Sun with a filter that passes the red hydrogen spectral line of wavelength 656.3 nm, called the Holine. The filter consists of a transparent dielectric of thickness d held between two partially aluminized glass plates. The filter is kept at a constant temperature. (a) Find the minimum value of d that will produce maximum transmission of perpendicular H light if the dielectric has an index of refraction of 1.400. (Enter your answer to one decimal place.) nm (b) If the temperature of the filter increases above the normal value increasing its thickness, what happens to the transmitted wavelength? (Assume the index of refraction of the dielectric remains constant.) ---Select--- (c) The dielectric will also pass what near-visible wavelength? One of the glass plates is colored red to absorb this light. nmarrow_forwardThe Rayleigh criterion provides a convenient way to describe the theoretical resolution (e.g. an ability to distinguish two bright objects ) of an optical system. The criterion states that two small bright sources of light can be resolved if the first diffraction minimum of the image of one source point just coincides with of further apart then the first maximum of another (see figure below). A converging lens, 31.5 mm in diameter, is used to form images of distant objects. Considering the diffraction by the lens, what angular separation must two distant point objects have in order to satisfy Rayleigh's criterion? Assume that the wavelength of the light from the distant objects is 516 nm. Provide your answer in millidegrees (mdeg).arrow_forward
- Incident nA = SQ + QT (3.19) na = dnki sin 0+ dnki sin 0 (3.20) = 2drki sin 0 H.W. Derive equation 3.20 (Bragg's Law) from equation 3.19 using trigonometry formulas.arrow_forwardThe limit to the eye's acuity is actually related to diffraction by the pupil. What is the angle between two just‑resolvable points of light for a 6.25 mm diameter pupil, assuming the average wavelength of 539 nm? angle between two points of light: ° Take the result to be the practical limit for the eye. What is the greatest possible distance a car can be from a person if he or she can resolve its two headlights, given they are 1.20 m apart? greatest distance at which headlights can be distinguished: m What is the distance between two just‑resolvable points held at an arm's length (0.750 m) from a person's eye? distance between two points 0.750 m from a person's eye:arrow_forwardInformation is stored on an audio compact disc, CD-ROM, or DVD disc in a series of pits on the disc. These pits are scanned by a laser beam. An important limitation on the amount of information that can be stored on such a disc is the width of the laser beam. Explain why this should be, and explain how using a shorter-wavelength laser allows more information to be stored on a disc of the same size. With which color of light can the Hubble Space Telescope see finer detail in a distant astronomical object: red, blue, or ultraviolet? Explain your answer.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON