The LIGO experiment, which historically detected gravitational waves for the first time in September 2015, uses a pair of highly sensitive Michelson interferometers. These have arms that are 4.00 km long and use powerful Nd:Yag lasers with 1064 nm wavelength. The beams traverse the arms both ways 280 times before recombining, which effectively lengthens the arm length to 1120 km. The devices are tuned so that the beams destructively interfere when they recombine if no gravitational wave is present. (a) The beam has a power of 100 kW, concentrated into an area of a square centimeter. Calculate the amplitude of the electric field in the beam. (b) LIGO can detect a gravitational wave that temporarily lengthens one arm by the minuscule amount of 10-18 m! When this happens, the beams combine with a phase difference of π + δ . Estimate the shift d in radians. Note that the phase difference accumulates during both traversals of each round trip.
Trending nowThis is a popular solution!
Step by stepSolved in 7 steps with 9 images
- The table contains data obtained during the single-slit microwave experiment with a slit width of 7 cm and a wavelength of 2.8 cm. To compare data like this with theory in Sec. 8.5, you will have to normalize both the intensity and the angular data. What is the normalized intensity I/I_0 at 40∘?arrow_forwardElectrons are ejected from a metallic surface with speeds ranging up to 4.1 × 105 m/s when light with a wavelength of 630nm is used. What is the cutoff frequency for this surface? Express your answer in terms of 1014 Hz and round it to the nearest hundredth. For example, if you get 1.234 x 1014 Hz, you type in 1.23. (Hint: you should first calculate the work function of the surface.) Use h=6.626x1034 Js; c=3 x108 m/s. ; me=9.11x10-31kg Js; c=3 x108 m/s. ; me=9.11x1031kgarrow_forward: In class we did a problem where we saw that Planck’s law, which is given byI(λ, T) = 2πhc2λ5(ehc/λkbT − 1),at high wavelengths reduces to the classical predictionI(λ, T) = 2πckBTλ4.We did this by using the MacLaurin series for an exponential.1 + x +x22! +x33! +x44! + ...When we did this problem in class, we reasoned that,when the wavelength (λ) is large, the term hc/λkbTis small enough that any term (hc/λkbT)2 or (hc/λkbT)3 or any higher power is neglible. That’s how weshowed that, in the limit of large λ, Planck’s law reduces to the classical prediction. Now assume that wewant to make a slightly better approximation. We still assume that λ is large and therefore (hc/λkbT)3 and(hc/λkbT)4 and all higher powers are negligible, but now we want to work at the level of precision where(hc/λkbT)2is not negligible. What does Planck’s law reduce to in this case?arrow_forward
- What are the energy and momentum of a photon of red light of wavelength 620 nanometers (nm)? What is the wavelength (in nm) of photons of energy 2.40 eV?arrow_forwardPlanck’s constant has the value h = 6.626 × 10–34 joule-seconds (J-s), and the speed of light is c = 3 × 108 m/s. Using these values, calculate the wavelength carried by photons emitted with an energy of 1.1 × 10-19 J.arrow_forwardRemember the wave equation is v = lambda - f For electromagnetic waves traveling in a vacuum, they all travel at the speed of light c = 2.998 * 10 ^ 8 * m / s . An ultraviolet wave from the Sun traveling at the speed of light has a wavelength of 3 * 10 ^ - 8 * m . Calculate the frequency of this wave 8.85 * 10 ^ 15 * Hz; 2.33 * 10 ^ 13 * Hz; 9.99 * 10 ^ 13 * Hz; 9.99 * 10 ^ 15 * Hzarrow_forward
- A light beam of wavelength λ= 500 nm, beam diameter 5 mm and intensity I is propagating in a medium. The absorption cross section of the medium is 2.3×10-19 cm-2 and upper-level lifetime is 10 µs. Calculate the power of the light beam that make the absorption coefficient of the medium (α) decays to 50% of its initial value (αo).arrow_forwardHigh-power lasers are used to compress a plasma (a gas of charged particles) by radiation pressure. A laser generating radiation pulses with peak power 1900 MW is focused onto 1.2 mm2 of high-electron-density plasma. Find the pressure exerted on the plasma if the plasma reflects all the light beams directly back along their paths. Number i 1.2E5 * Units N/m^2 or Paarrow_forwardVisible light falls into wavelength ranges of 400-700 nm, for which 1 m=1×109 nm The energy and wavelength of light are related by the equationE=hcλ where E is energy in Joules, h is Planck's constant ( 6.626×10−34 J-s ), c is the speed of light ( 2.998×108 m/s), and λ is the wavelength in m. If a visible light photon has a wavelength of 632.3 nm, what is the energy of the photon (in J)?arrow_forward