College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
The lens-maker’s equation for a lens with index n1 immersed
in a medium with index n2 takes the form
A thin diverging glass (index = 1.50) lens with R1 = –3.00 m and R2 = –6.00 m is surrounded by air. An arrow is placed 10.0 m to the left of the lens. (a) Determine the position of the image. Repeat part (a) with the arrow and lens immersed in (b) water (index = 1.33) (c) a medium with an index of refraction of 2.00. (d) How can a lens that is diverging in air be changed into a converging lens?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 5 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Chapter 34, Problem 013 Spherical mirrors. Object O stands on the central axis of a spherical mirror. For this situation object distance is ps = +15 cm, the type of mirror is concave, and then the distance between the focal point and the mirror is 26 cm (without proper sign). Find (a) the radius of curvature r (including sign), (b) the image distance i, and (c) the lateral magnification m. Also, determine whether the image is (d) real or virtual, (e) inverted from object O or noninverted, and (f) on the same side of the mirror as O or on the opposite side. (a) Number Units (b) Number Units (c) Number Units (d) (e) (f)arrow_forwardTwo lenses are separated by 50 cm. Lens 1 is convex and has a radius of curvature of magnitude 30 cm. Lens 2 is concave and has a radius of curvature of magnitude 40 cm and is located to the right of Lens 1. An object is located 20 cm to left of lens 1. Find the location of the final image of the object. What is the magnification of the final image?arrow_forwardAn object is placed 27 cm in front of a diverging lens having a focal length of magnitude 50 cm. What is the image distance, in cm? Your answer needs to have 2 significant figures, including the negative sign in your answer if needed. Do not include the positive sign if the answer is positive. No unit is needed in your answer, it is already given in the question statement.arrow_forward
- Is the final image real or virtual? Is the final image upright or inverted?arrow_forwardYou unconsciously estimate the distance to an object from the angle it subtends in your field of view. This angle 0 in radians is related to the linear height of the object h and to the distance d by 0= h/d. Assume that you are driving a car and that another car, 1.50 m high, is 22.0 m behind you. KTO & $3 m (d) What angle does the image subtend at your eyes? rad (e) Based on its angular size, how far away does the following car appear to be? m 0 1900 Per Works Inc OBJECTS IN MIRROR ARE CLOSER THAN THEY APPEAR vestest by Creators Syndicate The Far Side by Gary Larson 1985 FarWorks, Inc. All Rights Reserved. Used with permission. (a) Suppose your car has a flat passenger-side rearview mirror, 1.55 m from your eyes. How far from your eyes is the image of the car following you? m (b) What angle does the image subtend in your field of view? rad (c) Suppose instead your car has a convex rearview mirror (see figures) with a radius of curvature of magnitude 1.70 m. How far from your eyes is…arrow_forwardChapter 34, Problem 011 Spherical mirrors. Object O stands on the central axis of a spherical mirror. For this situation object distance is ps = +12 cm, the type of mirror is convex, and then the distance between the focal point and the mirror is 15 cm (without proper sign). Find (a) the radius of curvature r (including sign), (b) the image distance i, and (c) the lateral magnification m. Also, determine whether the image is (d) real or virtual, (e) inverted from object O or noninverted, and (f) on the same side of the mirror as O or on the opposite side. (a) Number Units (b) Number Units (c) Number Units (p) (e) (f)arrow_forward
- The lens-maker’s equation for a lens with index n1 immersed in a medium with index n2 takes the form A thin diverging glass (index = 1.50) lens with R1 = −3.00 m and R2 = −6.00 m is surrounded by air. An arrow is placed 10.0 m to the left of the lens. (a) Determine the position of the image. Repeat part (a) with the arrow and lens immersed in (b) water (index = 1.33) (c) a medium with an index of refraction of 2.00. (d) How can a lens that is diverging in air be changed into a converging lens?arrow_forwardHomework 12 Problem 10: Two lenses are mounted d = 27 cm apart on an optical bench. The focal length of the first lens is f1 = 5.1 cm and that of the second lens is f2 = 4.4 cm. An object of height ho = 3.5 cm is placed at a distance of do = 21 cm in front of the first lens. Part (a) Ignoring the second lens for now, at what distance, in centimeters, behind the first lens is the object’s image formed by that lens? di = ______ Part (b) Calculate the magnification of that image, including its sign. m = ______ Part (c) Now consider the two-lens system and the final image it forms, i.e., the image created by the second lens. What is the distance, in centimeters, between the object and its final image? D = ______arrow_forwardAn object is 6 cm in front of a converging lens with a focal length of 10cm. Draw a ray diagram (to scale with a ruler) to find the location of the image. Is the image upright or inverted, and Is the image real or virtual? Then I want to use the thin lens formula to find the image distance and the magnification. I got stuck in the middle of this problem and am confused. Thank you for the help!arrow_forward
- need help with part b,c, and e.arrow_forwardq40 An object is 37.5 cm from a converging mirror (focal length = 13.0 cm). Determine the image magnification. Enter the numerical part of your answer to two significant figures. Hint: Remember that the sign of the magnification is significant.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON