College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
The hydrogen spectrum has a red line at 656 nm and a violet line at 434 nm. What angular separation between these two spectral lines is obtained with a diffraction grating that has 4 500 lines/cm?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 6 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The smallest object a microscope can resolve using light of wavelength 755 nm is 5.62 micrometers. If that same microscope is used with light of wavelength 405 nm, what is the smallest object that the microscope can resolve?arrow_forward- We have a glass plate with a thickness of 200 micrometers and a refractive index of 2. What is the spectral accuracy and spectral free range of this Fabry Pro? 600 nm wavelengtharrow_forwardA red laser (λ = 656 nm) is incident on a diffraction grating that has n = 1100 lines per cm.Randomized Variablesλ = 656 nmn = 1100 lines/cm Part (a) What is the angle, in radians, that the first order maximum makes, θ1? Part (b) What is the angle of the fourth order maximum, θ4, in radians?arrow_forward
- 632.8 nm) is used to calibrate a diffraction grating. If the first-order maximum occurs at 21.0°, what is the spacing between adjacent grooves in the grating? (In this problem, assume that the light is incident normally on the grating.) μm A helium-neon laser (1 =arrow_forwardThe width of the central peak in a single-slit diffraction pattern is 5.0 mm. The wavelength of the light is 600. nm, and the screen is 1.9 m from the slit. (a.) What is the width of the slit in microns? (D= ?) (b.) What is the ratio of the intensity at 4.2mm from the center of the pattern to the intensity at the center of the pattern? (I/I0= ?)arrow_forwardA laser with a wavelength of λ = 401 nm is incident on a diffraction grating. The m = 3 maxima appears a distance of y = 2.00 cm from the central maximum when the screen is placed X = What is the diffraction angle for this m = 3 maxima? 0 = What is the slit separation, d, in nm? d = nm How many lines/cm does the grating have in lines cm lines cm ? 90 cm from the grating.arrow_forward
- White light hits a diffraction grating with lines that are spaced d = 1729 nm apart. What wavelength (λ) has its first order maximum (m = 1) diffracted to an angle of θ = 21.0º? Your answer should be in nanometers (nm)arrow_forward4. Two mirrors with the same power reflectivity R are utilized to form a Fabry-Perot resonator. If the separation of the two mirrors is L and the refractive index inside the resonator is n, what is the Free Spectral Range Af of the resonator in the frequency (not the angular frequency Aw) domain? Here the Free Spectral Range (FSR) is the optical frequency spacing between two successive reflected/transmit ted optical intensity maxima/minima of a resonator.arrow_forwardPotassium iodide (KI) has the same crystalline structure as NaCl, with atomic planes separated by 0.353 nm. A monochromatic x-ray beam shows a first-order diffraction maximum when the grazing angle is 8.60°. Calculate the x-ray wavelength. nmarrow_forward
- A transmission grating has 5,900 lines/cm. Light in the range from 400 nm to 720 nm impinges perpendicularly on the grating. How big is the angular width of the first-order spectrum?arrow_forwardAn electric current through an unknown gas produces several distinct wavelengths of visible light. Consider the first order maxima for the wavelengths 403 nm, 428 nm, 511 nm, and 682 nm of this unknown spectrum, when projected with a diffraction grating of 5,000 lines per centimeter.Randomized Variablesλ1 = 403 nmλ2 = 428 nmλ3 = 511 nmλ4 = 682 nm Part (a) What would the angle (in degrees) be for the 403 nm line? Part (b) What would the angle (in degrees) be for the 428 nm line? Part (c) What would the angle (in degrees) be for the 511 nm line? Part (d) What would the angle (in degrees) be for the 682 nm line? Part (e) Using this grating, what would be the angle (in degrees) of the second-order maximum of the 403 nm line?arrow_forwardThe hydrogen spectrum has a red line at 656 nm and a violet line at 434 nm. What angular separation between these two spectral lines is obtained with a diffraction grating that has 4982 lines/cm? (Assume that the light is incident normally on the grating.) first order separation second order separation third order separationarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON