Advanced Engineering Mathematics
Advanced Engineering Mathematics
10th Edition
ISBN: 9780470458365
Author: Erwin Kreyszig
Publisher: Wiley, John & Sons, Incorporated
Bartleby Related Questions Icon

Related questions

Question

This is my only attempt 

### Understanding the Length of a Helix

The helix of radius \( R \), height \( h \), and \( N \) complete turns has the parametrization

\[
\mathbf{r}(t) = \left\langle R \cos \left( \frac{2\pi Nt}{h} \right) , R \sin \left( \frac{2\pi Nt}{h} \right) , t \right\rangle , \quad 0 \leq t \leq h
\]

To calculate the length \( s \) of a helix if \( R = 3 \), \( h = 7 \), and \( N = 8 \), we follow the steps below. (Use symbolic notation and fractions where needed.)

The first calculation provided in the image is:

\[
s = 7 \sqrt{ 1 + \frac{1152\pi}{49} }
\]

However, the response indicates that the answer is incorrect.

To compute the correct length of the helix, let's break down the necessary steps:

1. **Parametrize the Helix Equation**  
   Given the parameterization of the helix:
   \[
   \mathbf{r}(t) = \left\langle R \cos \left( \frac{2\pi Nt}{h} \right), R \sin \left( \frac{2\pi Nt}{h} \right), t \right\rangle 
   \]
   where \( R = 3 \), \( h = 7 \), and \( N = 8 \).

2. **Calculate the Derivative**  
   Compute the derivative \( \mathbf{r}'(t) \):
   \[
   \mathbf{r}'(t) = \left\langle -R \frac{2\pi N}{h} \sin \left( \frac{2\pi Nt}{h} \right), R \frac{2\pi N}{h} \cos \left( \frac{2\pi Nt}{h} \right), 1 \right\rangle 
   = \left\langle -3 \frac{16\pi}{7} \sin \left( \frac{16\pi t}{7} \right), 3 \frac{16\pi}{7} \cos \left( \frac{16\pi t}{
expand button
Transcribed Image Text:### Understanding the Length of a Helix The helix of radius \( R \), height \( h \), and \( N \) complete turns has the parametrization \[ \mathbf{r}(t) = \left\langle R \cos \left( \frac{2\pi Nt}{h} \right) , R \sin \left( \frac{2\pi Nt}{h} \right) , t \right\rangle , \quad 0 \leq t \leq h \] To calculate the length \( s \) of a helix if \( R = 3 \), \( h = 7 \), and \( N = 8 \), we follow the steps below. (Use symbolic notation and fractions where needed.) The first calculation provided in the image is: \[ s = 7 \sqrt{ 1 + \frac{1152\pi}{49} } \] However, the response indicates that the answer is incorrect. To compute the correct length of the helix, let's break down the necessary steps: 1. **Parametrize the Helix Equation** Given the parameterization of the helix: \[ \mathbf{r}(t) = \left\langle R \cos \left( \frac{2\pi Nt}{h} \right), R \sin \left( \frac{2\pi Nt}{h} \right), t \right\rangle \] where \( R = 3 \), \( h = 7 \), and \( N = 8 \). 2. **Calculate the Derivative** Compute the derivative \( \mathbf{r}'(t) \): \[ \mathbf{r}'(t) = \left\langle -R \frac{2\pi N}{h} \sin \left( \frac{2\pi Nt}{h} \right), R \frac{2\pi N}{h} \cos \left( \frac{2\pi Nt}{h} \right), 1 \right\rangle = \left\langle -3 \frac{16\pi}{7} \sin \left( \frac{16\pi t}{7} \right), 3 \frac{16\pi}{7} \cos \left( \frac{16\pi t}{
Expert Solution
Check Mark
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Advanced Engineering Mathematics
Advanced Math
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Wiley, John & Sons, Incorporated
Text book image
Numerical Methods for Engineers
Advanced Math
ISBN:9780073397924
Author:Steven C. Chapra Dr., Raymond P. Canale
Publisher:McGraw-Hill Education
Text book image
Introductory Mathematics for Engineering Applicat...
Advanced Math
ISBN:9781118141809
Author:Nathan Klingbeil
Publisher:WILEY
Text book image
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Text book image
Basic Technical Mathematics
Advanced Math
ISBN:9780134437705
Author:Washington
Publisher:PEARSON
Text book image
Topology
Advanced Math
ISBN:9780134689517
Author:Munkres, James R.
Publisher:Pearson,